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Most integrals in Localised Boundary Domain Integral Equations (LBDIEs) comprise singularities.
This paper aims to produce numerical solutions of the LBDIEs for the Partial Differential Equations

with variable coefficients. The singularities of the boundary integrals in LBDIEs will be handled by

using a semi-analytic for logarithmic singularity and a semi-quadratic analytic method for P2
singularity. Whereas the singular domain integrals are handled by using the Duffy transformation.
The LBDIEs that we consider are associated with the Neumann problem, which can be solved with a
condition. If it can be solved, the solution is, however, unique up to an additive constant. We add a
perturbation operator to the LBDIEs to convert the LBDIE to a uniquely solvable equation. The
perturbed integral operator leads the perturbed LBDIEs to a dense matrix system that disable the
use of methods in solving sparse matrix system. We solve the system of linear equations by Lower-
Upper (LU) decomposition method. The numerical results indicate that high accuracy results can be

attained. It gives the impression that the methods we use in this numerical experiment are reliable

in handling the boundary and domain singular integrals.
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I. INTRODUCTION

The Boundary Element Model (BEM) is a method for the
numerical solution of partial differential equations used in
engineering problems. There are many other methods for
solving partial differential equations. See e.g. (Melenk &
Xenophontos, 2015; Melenk et al., 2012; Nolasco et al., 2020;
Brandenburg & Clemmons, 2012) for the discussion of other
methods for instance, finite-difference method (FDM), hp-
Finite Element Method and Finite Element Method (FEM).
Examples of BEM’s applications can be attained from the
fields of elastodynamics,

electromagnetics, acoustics,

biomechanics, and off-shore structures, which can be found

*Corresponding authot’s e-mail: akmal.mohamed@fsmt.upsi.cdu.my

in (Chaillat et al., 2017; Xu et al., 2018; Wang et al., 2012;
Kirkup, 2019; Katsikadelis, 2016).

The BEM is established through the transformation of the
differential equation into an integral equation that is well-
grounded throughout the domain, on the boundary, and
outside the domain. Some examples of differential equations
include Laplace’s equation, Helmholtz’s equation, the
convection-diffusion equation, the potential equation, the
equation of viscous flow, equations of electrostatics and
electromagnetics, and the equations of linear elastostatics
and elastodynamics as explained in (Costaz, 2002).

In most cases in BEM, the unknown function or its

derivative is solved only for its boundary distribution. The
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solution at each internal domain point can be generated by
direct assessment after the unknown boundary distributions
are determined. Other methods, e.g., finite differences and
finite element methods, require the whole domain to be
discretised, and this greatly increases the computational cost
and time consumption. See e.g. (Brandenburg & Clemmons,
2012; Sutradhar et al., 2008).

In this paper, we will consider an elliptic partial differential
equation with a variable coefficient with 2 dimensions. The
Neumann boundary condition is prescribed on the boundary.
Unlike Laplace’s equation which transforms into a boundary
integral equation, an elliptic partial differential equation with
a variable coefficient will be transformed into Boundary-
Domain Integral Equation.

The required function must, therefore, be determined
throughout the entire boundary and the interior region of the
solution. The boundary integral equations that include the
fundamental solution and its first derivative are obtained for
the Laplace equations corresponding to an elliptical equation
with a constant coefficient. Nonetheless, the normal
derivative of the fundamental solution is also a solution for
the differential equation.

For the elliptic equation with a variable coefficient, the
fundamental solution is generally unknown. However, a
parametrix is generally available, enabling the derivation of
the boundary-domain integral equations for potential and
flux. See, e.g. (Mikhailov & Mohamed, 2012; Mohamed et al.,
2016).

A negative aspect of the boundary integral equation and
Boundary-Domain Integral Equations is that the resulting
discrete matrix equations are dense matrices. See, e.g.
(Mohamed et al., 2016). Finite elements and finite
differences methods produce matrix systems that are sparse
and inherently greater in size than the matrix systems
generated by boundary integral equations. See, e.g. (Nolasco
et al., 2020; Brandenburg & Clemmons, 2012). However, the
system of matrix produced by finite elements and finite
differences methods and Boundary-Domain Integral
Equations are of the same size.

Unlike FEM, Boundary-Domain Integral Equations
(BDIEs) comprise singular integrals of logarithmic and its
derivative kernels. Whenever the source point and field point
its  derivative’s increasingly

overlap, singularity is

strengthened. It is well-known that the computation of
extremely singular integral is crucial.

The sizes of matrices produced by finite elements, finite
differences methods, and Boundary-Domain Integral
Equations are of the same size. And yet, the disadvantage of
having singularity kernels like in Boundary Integral
Equations (BIEs) preserve in BDIEs cases. Furthermore, the
discrete matrix is a dense matrix which is again a drawback
as compared to FDM and FEM.

Therefore, (Mohamed et al., 2016) introduced a localised
parametric to transform a partial differential equation with a
variable coefficient into a Localised Boundary integral
equation. The matrix systems generated by LBDIEs are
sparse, as in FEM and FDM. However, the drawback of
having singularity kernels like in BIEs and BDIEs still
preserves in LBDIEs cases.

Purely Neumann problem can be solved with a condition. If
it can be solved, the solution is, however, unique up to an
additive constant. See, e.g. (Mikhailov & Mohamed, 2012).
Neumann LBDIDE inherits this property. In this paper, we
append a perturbation operator to the LBDIEs to convert the
LBDIE to a uniquely solvable equation.

Boundary integral is an emerging area of research, and
recent developments have been made in several new
computational methods. Some methods in recasting the
integral equations to a system of equations are, for instance,
the collocation method, Galerkin, Boundary Contour Method,
Boundary Node Method, and Boundary Cloud Method, as
mentioned in (Sutradhar et al., 2008).

The first mentioned method, i.e., the collocation method,
can also be utilised for the BDIEs and LBDIEs. In this
collocation method, the boundary integral equation is
expressed at a number of points. See, e.g. (Katsikadelis, 2016;
Beer et al., 2001). The simplest collocation method is by
taking the nodes in discretising the boundary as the
collocation points. Some works on the BDIEs related to the
collocation method can be found in (Mikhailov & Mohamed,
2012; Mohamed et al., 2016a; Mohamed et al., 2016b).

In this paper, we will use the collocation point method with
linear interpolation and bilinear interpolation for boundary
and domain

integration, respectively. The numerical

integration for each of the elements is accomplished with
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Gauss-Legendre quadrature, except for those elements in
which the integration is singular.

The BIEs, BDIEs, and LBDIEs consist of singular integrals
of logarithmic and its derivative kernels. These singular
integrals diverge whenever source and field points overlap.
The singular integration over elements for integrals of
logarithmic can be performed by the Gauss-Laguerre
quadrature formula. Some numerical results that use Gauss-
Laguerre quadrature formula for the singular logarithmic
integrals are e.g. (Mikhailov & Mohamed, 2012; Beer et al.,
2001).

Mohamed (2014) introduced a semi-analytic method that is
an alternative to the Gauss-Laguerre quadrature formula for
boundary singular integration over elements of logarithmic
integrals. This semi-analytic method was then utilised for
solving numerical BDIEs/BDIDEs. See e.g. (Mohamed et al.,
2016a; Mohamed et al.,, 2016b). Mohamed et al. (2020)

derived a method named as semi-quadratic analytic method,

which is a method to handle boundary integration with 2
singularity.

In this paper, we will solve numerical LBDIE related to the
Neumann problem. We utilise the semi-analytic method
formula for boundary singular logarithmic integration. In

addition, we use semi-quadratic analytic method for

boundary singular integration with P2 singularity. The
mesh-based discretisation of the unperturbed Neumann
LBDIEs by using quadrilateral domain elements leads to the
system of linear equations with the sparse matrix operator.
However, the perturbed integral operator gives a dense
matrix that leads the perturbed LBDIEs to a dense matrix

system that disables the use of methods for solving sparse

matrix system.

II. MATERIALS AND METHOD
A. Localised Boundary-Domain Integral Equations

A linear second-order elliptic PDE with a variable coefficient

a(&) is taken into account, as given below.

Au(S) = z (5)—u(§) A2 @

S0g 05

where u(£) is an undefined function, whereas f(&) is

known.

Mikhailov (2002) discussed the use of a localised

parametrix O, (&,7) that can transform partial differential

equations with variable coefficient a(&) in (1) to a sparse

matrix system.

The localised parametrix O, (&,7) is given as follows:

0, (&.m) = x(S,mO(5. 1),

where Q(&,7) is a parametrix given by

QEm =52, fner?,
and y(&,7n) is a discontinuation function. It implies that
y(m,n)=1and y(£,7)=0 at 1 not part of a localisation
domain w(77).

Therefore, O, (&,77) is not zero only on @(77) . The

singularity of O, (£,7) is inherited from Q(&,77) whenever

the overlapping between source and field points occurs.

The localised parametrix O, (&,77) satisfies that

A4:0,(5.n)=09(5,n)+S,(5.1).
Here 6(&,7) is the Dirac delta function, and the localised

remainder S, (&,77) is denoted as

S, (&m=8(5m—A4: (1= O),

where,

i—1;i 0

2
2mz(11) r 9§’ mERS

The third Green identity related to localised parametrix

0, (&,m) is as follows. See e.g. (Mikhalov, 2002).

cpuim=[  Te0, (&mu(§) dr()
oo T, (Em) dT(E)
ey T (B dT ()
ooty THEQ, (Em) dT(E)

u(£)S ,(£.1) dA&)

()0, (&) dAE), neQ

(2)

f NrQ
-]

w(mNQ
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where,

00(&,1m)
9¢;

_Saew, et (& =)
i=1 ( )

Here Q is the domain and 0C is the boundary such that

T:0(c.m) = Za(cf)v ) —F—

QuU=Q and QNI =0
In addition, we define the localisation domain and

localisation boundary as w and Jw , respectively, with
wUdw=w and ®Now =D .

The discontinuation function y(¢&,y) is taken as

L Sealn),
S
that leads
_JOE.m), Sen),
N s
and
_JOE.m), S en),
Ql(egﬁl)—{ 0. £ ¢ o)

As compared to BDIEs, the LBDIEs has additional two
integrals due to the fact that y(&,7) is discontinuancein ¢ €

R™.

B. Localised Boundary-Domain Integral Equation
Method for Neumann Problem

For Neumann problem, we apply the Neumann boundary

condition Tu(&) =7 (&), £ € 6Q in (2), gives

cuim =, T:0, (Emu(€) dr()
Tu(£)Q, (£m) dr(&)
u(&)S,, (&) dAE)
= 2, (Em) dT ()
1(©Q, (&) Q).

+I QNow(n)

jw(r])ﬁQ ®

I()mQ neQ

The solution u is not determined uniquely, but to the

approximation of an arbitrary constant. The uniqueness can

be attained by adding the perturbation operator (4),

u(g) dI'(9), (@)

1
mjag

to the Neumann LBDIE (3) and yields as described in the

following:

c(mu(n) + u(8) dI'(5)

1
@J‘m
oo T (£ dT()
Tu()0, (&,7) dr'(&)
u(&)S . (£.1) dQA&E)
=~ el ©2(Em dT(&)

()0, (&,m) dQ(S),

+J‘Qm6w( ) (5)

-[ ()N

-[ o(m)NQ 7€

The adding of the perturbation operator (4) is also used in
(Mikhailov & Mohamed, 2012) for solving Neumann BDIEs.
We use collocation method to reduce LBDIE to the finite
system. In this method, the LBDIEs are implemented at a
number of points on the boundary as well as interior domain.
The nodes that are used to discretise the boundary and mesh
the interior domain are then taken as the collocation points.

Note that, from (5), the localised parametrix O, (&,7)

kernels in the 31, 5th and 6 integrals are generally die off for

large r = |§ - 77| . Therefore, when the value of r = |§ - 77| is

close to zero i.e., whenever & € @(77) , the singular integrals

incline to be the prevailing terms.

The same case happened to its derivative 7:0, (&,77)

kernel in the 214 integral and the localised remainder kernel

§,(&.m) in 4™ integral. Therefore, excellent methods to

handle the singularities integrations of the localised

parametrix Q,(&,n7) , its derivative 7.0, (S,;7) and

localised remainder S, (¢,7) are necessary.

We chose Duffy transformation to handle all the domain
integrations with the singularity kernels, i.e., for the 4th and
6t integrals. For the boundary integrations with the
singularity kernels, we used 3 different methods which are
most appropriate for each of the integral. See (Duffy, 1982)
for the discussion on Duffy transformation.

We use semi-analytic method and semi-quadratic analytic
method as proposed by (Mohamed, 2014) and (Mohamed et
al., 2020), respectively to handle the boundary singularity in
the 3™ integral and 2™ integral before the integrals are
calculated by the standard Gaussian quadrature method i.e.,
Gauss-Legendre The

quadrature formula. singularity
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boundary integral in the 5th integral is calculated by Gauss-
Laguerre quadrature formula.

III. RESULT AND DISCUSSION

In this section, we demonstrate the numerical solution for
perturbed Neumann LBDIE (5) for three test domains. We
apply exactly identical test domains like in (Mikhailov &
Mohamed, 2012; Mohamed et al., 2016), i.e., a square, a circle
and a parallelogram for easier comparability.

Below is the list of the Neumann problems that we use as
our test problems.

Test 1:

a(é) =& ,f(¢) = 0for £eQUAQ,

(6)
with (&) =& v (&), £,
Test 2:
a(§) =& .S(6) =28 forgcuoa,

witht(f) = 254 2v1(§), e,
The problems in tests 1-2 in (6) and (7) have the exact
solutions as in (8) and (9), respectively.

u(é) =&, £eQuoQ, (8)

u(f) :§12, £eQuoQ. (9)

The Neumann problems as in (6) and (7) are the same
problems as tested in (Mikhailov & Mohamed, 2012) but now
solved for LBDIEs.

The numerical implementations are performed by
employing Fortran up to double precision accuracy. The
solution of the matrix system yields from perturbed
Neumann LBDIE (5) is attained by using LU decomposition
method.

We express relative errors for the estimated solution and its

gradient for each of the domains as given below.
Ugpprox (51 ) ~Uexact (51 )‘

Heraer (57)

max
1)<

Ou) =

, (10)

max
1<j<J

max

‘Vuapprox (éij) - Vuexacl (éjcm )‘
dvu) _ 1<m<M

VMexact (‘fcm )

) (11)
max
1<m<M

where & centres quadrilateral domain elements e, .
The following are the tables for computational relative

errors of the approximate solution O(u) and of its gradient

O(Vu) as given in (10) and (11). Tables 1-3 display the

relative errors of approximate solutions u,,, and their

approx Versus number of nodes J for Test 1 and

gradient Vu

Test 2.

Table 1. Relative errors on the square vs. number of nodes

J of the estimated solutions (a) and their gradients (b).

J u) ou) AVu) AVu)
for Test1 for Test 2 for Test1 for Test 2
25 2.211E-10 1.470E-2 1.242E-09 8.632E-2
81 1.193E-10 1.086E-2 1.079E-09 6.605E-2
289 6.946E-11 5.586E-3 9.48E-10 4.246E-2
1089 4.371E-11 2.682E-3 8.447E-10 2.402E-2

Table 2. Relative errors on the circular domain vs. number

of nodes J of the estimated solutions (a) and their

gradients (b).
J o o) ou) AVu) AVu)
for Test 1 for Test2 forTest1 for Test 2
41 2.433E-10 5.421E-2 6.302E-05 1.976E-1
145 1.655E-10 2.241E-2 7.330E-06 1.091E-1
545 1.357E-10 1.789E-2 7.304E-06 8.084E-2
2113  6.308E-11 1.671E-2 6.819E-06 1.002E-1

Table 3. Relative errors on parallelogram vs. number of

nodes J of the estimated solutions (a) and their gradients

(b).
J u) Aou) aVu) AVu)
for Test1  for Test 2 for Test1 for Test 2
25 6.953E-10 0.0395 4.892E-09 0.2769
81 4.525E-10 0.1469 4.242E-09 0.5887
289 1.908E-10 0.2575 5.801E-09 1.3156
1089 5.961E-11 0.24514 8.989E-09 1.5559

The power function that corresponds to the error's

dependency on the total count of nodes J is found to be
O~ J 72 ~ 17 . In other words, J has corresponded with a
power function. Here 4 is an average linear size of the

elements. Through our numerical calculations for Test 1, it

yields 7 ~1 for both square and parallelogram domains.
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This rate of convergence is similar to that of the non-localised
Neumann-related BDIE in (Mikhailov & Mohamed, 2012).
We have relatively slow convergence in circular domain,

ie., 7 ~0.7 .For Test2,itisprevailedthat 7~0.9, 7 ~0.8

and 7 ~ —0.9 for square domain, circle and parallelogram,
respectively. Likewise, we have O(Vu)~.J T2 h; for
gradient error. The results for Test 1 are 7 ~0.05 , T~-14
and 7=-04 for square, circle and parallelogram,
respectively. While for Test 2, we obtained 7=04, 1=03

and 7=-0.9 for square, circle and parallelogram,
respectively.

The precision in Test 1 is far greater than in Test 2 due to
the piece-wise bi-linear interpolation is exact on the linear
solution. Therefore, only the error for integral operator
approximation associated with numerical integration
accuracy is concerned. On the contrary, the quadratic exact

solution in Test 2 on the piece-wise bi-linear interpolation

contributes to the total error.

IVv. CONCLUSION

In this paper, we have presented the numerical results for the
solution of Neumann LBDIEs with perturbed operator. The
LBDIEs comprise boundary and domain integrals that deal

with singular kernels. The singular kernels for boundary

integrals are of logarithmic singularity and r2 singularity.

Whereas the singular kernels for domain integrals are of

logarithmic and P2 singularity. The LBDIEs contain the

integrals with kernels that are only nonzero when x € ().

This leads the LBDIEs to the sparse system of matrix
equations. However, the matrix obtained from the perturbed
integral operator is dense. The perturbation operator is added
in order to make the Neumann LBDIEs has a unique solution.
Therefore, the final matrix system of equations is not sparse
that enables the use of iterative methods suitable for solving
sparse matrix system.

The test problems that we have chosen are linear solution
and quadratic solution. From the results we have obtained, it
can be concluded that all methods in handling all singular
boundary and domain integrals are reasonably good. The

newly invented methods which are semi-analytic method in

handling logarithmic singularity for boundary integration

and semi-quadratic analytic method for r2 singularity for
boundary integration, are proven to give high accuracy. This
can be seen for the test problem with a linear solution that
only involved integration error. The test problem with
quadratic solution involves integration and interpolation
errors where interpolation error is a more prominent error.

For future research, it would be good if we could check how
well both the semi-analytic method and semi-quadratic
analytic method as compared to the use of the standard
Gaussian quadrature i.e., Gauss-Legendre quadrature
formula. Besides, it is excellent research if we can observe
how these semi-analytic and semi-quadratic analytic
methods act on various test problems, e.g., solutions
involving complex variables.

In this paper, the singularity for double integration is

a Duffy

transformation. However, in this Duffy transformation, it is

handled by a transformation method i.e.,
required to sub-mesh the related quadrilateral element into
two triangular elements. Therefore, it is suggested that the
procedure involved in the derivation of semi-analytic and
semi-quadratic analytic methods for singular boundary
integration are extended to the singular domain integration.
It is proposed that this new method for singular domain
integration if successfully derived can be a great alternative
to the transformation method to handle singularity of double
integration. The well-known transformation methods are
e.g., singular integral are Duffy transformation and
transformation.

Other future research that we may consider is to extend the
use of the semi-analytic and semi-quadratic analytic methods
to the BDIE/BDIDE obtained from the Helmholtz and heat
conduction equations with variable coefficient.

It would be a good effort if we could extend our experiments
to further test domains with various test problems to see how
the results will react to the distortion of interior mesh
elements. It is also suggested to attempt the use of triangular

mesh elements instead of quadrilateral mesh elements.
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