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Most integrals in Localised Boundary Domain Integral Equations (LBDIEs) comprise singularities.  

This paper aims to produce numerical solutions of the LBDIEs for the Partial Differential Equations 

with variable coefficients. The singularities of the boundary integrals in LBDIEs will be handled by 

using a semi-analytic for logarithmic singularity and a semi-quadratic analytic method for 2r−  

singularity. Whereas the singular domain integrals are handled by using the Duffy transformation. 

The LBDIEs that we consider are associated with the Neumann problem, which can be solved with a 

condition. If it can be solved, the solution is, however, unique up to an additive constant. We add a 

perturbation operator to the LBDIEs to convert the LBDIE to a uniquely solvable equation.  The 

perturbed integral operator leads the perturbed LBDIEs to a dense matrix system that disable the 

use of methods in solving sparse matrix system. We solve the system of linear equations by Lower-

Upper (LU) decomposition method. The numerical results indicate that high accuracy results can be 

attained. It gives the impression that the methods we use in this numerical experiment are reliable 

in handling the boundary and domain singular integrals.  

Keywords:  boundary element method; localised boundary domain integral equations; Neumann 

problem; partial differential equations; variable coefficient 

 

 
I. INTRODUCTION 

 
The Boundary Element Model (BEM) is a method for the 

numerical solution of partial differential equations used in 

engineering problems. There are many other methods for 

solving partial differential equations. See e.g. (Melenk & 

Xenophontos, 2015; Melenk et al., 2012; Nolasco et al., 2020; 

Brandenburg & Clemmons, 2012) for the discussion of other 

methods for instance, finite-difference method (FDM), hp-

Finite Element Method and Finite Element Method (FEM). 

Examples of BEM’s applications can be attained from the 

fields of elastodynamics, electromagnetics, acoustics, 

biomechanics, and off-shore structures, which can be found 

in (Chaillat et al., 2017; Xu et al., 2018; Wang et al., 2012; 

Kirkup, 2019; Katsikadelis, 2016).  

The BEM is established through the transformation of the 

differential equation into an integral equation that is well-

grounded throughout the domain, on the boundary, and 

outside the domain. Some examples of differential equations 

include Laplace’s equation, Helmholtz’s equation, the 

convection-diffusion equation, the potential equation, the 

equation of viscous flow, equations of electrostatics and 

electromagnetics, and the equations of linear elastostatics 

and elastodynamics as explained in (Costaz, 2002). 

In most cases in BEM, the unknown function or its 

derivative is solved only for its boundary distribution. The 
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solution at each internal domain point can be generated by 

direct assessment after the unknown boundary distributions 

are determined. Other methods, e.g., finite differences and 

finite element methods, require the whole domain to be 

discretised, and this greatly increases the computational cost 

and time consumption. See e.g. (Brandenburg & Clemmons, 

2012; Sutradhar et al., 2008). 

In this paper, we will consider an elliptic partial differential 

equation with a variable coefficient with 2 dimensions. The 

Neumann boundary condition is prescribed on the boundary. 

Unlike Laplace’s equation which transforms into a boundary 

integral equation, an elliptic partial differential equation with 

a variable coefficient will be transformed into Boundary-

Domain Integral Equation.  

The required function must, therefore, be determined 

throughout the entire boundary and the interior region of the 

solution. The boundary integral equations that include the 

fundamental solution and its first derivative are obtained for 

the Laplace equations corresponding to an elliptical equation 

with a constant coefficient. Nonetheless, the normal 

derivative of the fundamental solution is also a solution for 

the differential equation.  

For the elliptic equation with a variable coefficient, the 

fundamental solution is generally unknown. However, a 

parametrix is generally available, enabling the derivation of 

the boundary-domain integral equations for potential and 

flux. See, e.g. (Mikhailov & Mohamed, 2012; Mohamed et al., 

2016).   

A negative aspect of the boundary integral equation and 

Boundary-Domain Integral Equations is that the resulting 

discrete matrix equations are dense matrices. See, e.g. 

(Mohamed et al., 2016).  Finite elements and finite 

differences methods produce matrix systems that are sparse 

and inherently greater in size than the matrix systems 

generated by boundary integral equations. See, e.g. (Nolasco 

et al., 2020; Brandenburg & Clemmons, 2012). However, the 

system of matrix produced by finite elements and finite 

differences methods and Boundary-Domain Integral 

Equations are of the same size. 

Unlike FEM, Boundary-Domain Integral Equations 

(BDIEs) comprise singular integrals of logarithmic and its 

derivative kernels. Whenever the source point and field point 

overlap, its derivative’s singularity is increasingly 

strengthened. It is well-known that the computation of 

extremely singular integral is crucial. 

The sizes of matrices produced by finite elements, finite 

differences methods, and Boundary-Domain Integral 

Equations are of the same size.  And yet, the disadvantage of 

having singularity kernels like in Boundary Integral 

Equations (BIEs) preserve in BDIEs cases. Furthermore, the 

discrete matrix is a dense matrix which is again a drawback 

as compared to FDM and FEM. 

Therefore, (Mohamed et al., 2016) introduced a localised 

parametric to transform a partial differential equation with a 

variable coefficient into a Localised Boundary integral 

equation. The matrix systems generated by LBDIEs are 

sparse, as in FEM and FDM. However, the drawback of 

having singularity kernels like in BIEs and BDIEs still 

preserves in LBDIEs cases.  

Purely Neumann problem can be solved with a condition. If 

it can be solved, the solution is, however, unique up to an 

additive constant. See, e.g. (Mikhailov & Mohamed, 2012). 

Neumann LBDIDE inherits this property. In this paper, we 

append a perturbation operator to the LBDIEs to convert the 

LBDIE to a uniquely solvable equation.   

Boundary integral is an emerging area of research, and 

recent developments have been made in several new 

computational methods. Some methods in recasting the 

integral equations to a system of equations are, for instance, 

the collocation method, Galerkin, Boundary Contour Method, 

Boundary Node Method, and Boundary Cloud Method, as 

mentioned in (Sutradhar et al., 2008). 

The first mentioned method, i.e., the collocation method, 

can also be utilised for the BDIEs and LBDIEs. In this 

collocation method, the boundary integral equation is 

expressed at a number of points. See, e.g. (Katsikadelis, 2016; 

Beer et al., 2001). The simplest collocation method is by 

taking the nodes in discretising the boundary as the 

collocation points. Some works on the BDIEs related to the 

collocation method can be found in (Mikhailov & Mohamed, 

2012; Mohamed et al., 2016a; Mohamed et al., 2016b).  

In this paper, we will use the collocation point method with 

linear interpolation and bilinear interpolation for boundary 

and domain integration, respectively. The numerical 

integration for each of the elements is accomplished with 
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Gauss-Legendre quadrature, except for those elements in 

which the integration is singular.  

The BIEs, BDIEs, and LBDIEs consist of singular integrals 

of logarithmic and its derivative kernels. These singular 

integrals diverge whenever source and field points overlap.  

The singular integration over elements for integrals of 

logarithmic can be performed by the Gauss-Laguerre 

quadrature formula. Some numerical results that use Gauss-

Laguerre quadrature formula for the singular logarithmic 

integrals are e.g. (Mikhailov & Mohamed, 2012; Beer et al., 

2001). 

Mohamed (2014) introduced a semi-analytic method that is 

an alternative to the Gauss-Laguerre quadrature formula for 

boundary singular integration over elements of logarithmic 

integrals. This semi-analytic method was then utilised for 

solving numerical BDIEs/BDIDEs. See e.g. (Mohamed et al., 

2016a; Mohamed et al., 2016b). Mohamed et al. (2020) 

derived a method named as semi-quadratic analytic method, 

which is a method to handle boundary integration with 2r−  

singularity. 

In this paper, we will solve numerical LBDIE related to the 

Neumann problem. We utilise the semi-analytic method 

formula for boundary singular logarithmic integration. In 

addition, we use semi-quadratic analytic method for 

boundary singular integration with 2r−   singularity. The 

mesh-based discretisation of the unperturbed Neumann 

LBDIEs by using quadrilateral domain elements leads to the 

system of linear equations with the sparse matrix operator. 

However, the perturbed integral operator gives a dense 

matrix that leads the perturbed LBDIEs to a dense matrix 

system that disables the use of methods for solving sparse 

matrix system. 

 
II. MATERIALS AND METHOD 

 
A. Localised Boundary-Domain Integral Equations  

 
A linear second-order elliptic PDE with a variable coefficient 

( )a ξ  is taken into account, as given below. 

1
( ) ( ) ( ) ( ),

n

i ii
Au a u fξ ξ ξ ξ

ξ ξ=

∂ ∂
= =

∂ ∂∑                  (1)   

where ( )u ξ   is an undefined function, whereas ( )f ξ  is 

known. 

Mikhailov (2002) discussed the use of a localised 

parametrix ( , )Qχ ξ η  that can transform partial differential 

equations with variable coefficient ( )a ξ  in (1) to a sparse 

matrix system. 

The localised parametrix ( , )Qχ ξ η  is given as follows: 

( , ) ( , ) ( , ),Q Qχ ξ ξ ξη χ η η=  

where ( , )Q ξ η  is a parametrix given by  

𝑄𝑄(𝜉𝜉, 𝜂𝜂) = 𝑙𝑙𝑙𝑙 |𝜉𝜉−𝜂𝜂|
2𝜋𝜋𝜋𝜋(𝜂𝜂)

,   𝜉𝜉, 𝜂𝜂 ∈ ℝ2,  

and ( , )χ ξ η  is a discontinuation function.  It implies that 

( , ) 1χ η η =  and ( , ) 0χ ξ η =  at η  not part of a localisation 

domain ( )ω η .  

Therefore, ( , )Qχ ξ η  is not zero only on ( )ω η . The 

singularity of ( , )Qχ ξ η  is inherited from ( , )Q ξ η  whenever 

the overlapping between source and field points occurs. 

The localised parametrix  ( , )Qχ ξ η  satisfies that 

.χ χA Q ( , )= δ( , )+S ( , )ξ ξ ξ ξη η η  

Here ( , )δ ξ η  is the Dirac delta function, and the localised 

remainder ( , )Sχ ξ η  is denoted as 

( , ) ( , ) ((1 ) ),S S A Qχ ξη ξ η χξ = − −  

where, 

𝑆𝑆(𝜉𝜉, 𝜂𝜂) = 1
2𝜋𝜋𝜋𝜋(𝜂𝜂)

∑ 𝜉𝜉𝑖𝑖−𝜂𝜂𝑖𝑖
𝑟𝑟

2
𝑖𝑖=1

𝜕𝜕𝜕𝜕(𝜉𝜉)
𝜕𝜕𝜉𝜉𝑖𝑖

,   𝜉𝜉, 𝜂𝜂 ∈ ℝ2.  

The third Green identity related to localised parametrix 

( , )Qχ ξ η  is as follows. See e.g. (Mikhalov, 2002).   
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            (2) 
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where, 

2

1
2

2
1
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a
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ξ
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η

ξ

ν
ξ

η
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ξ

ξ ξ
π

=

=

∂
=

∂

−
=

∑

∑
 

Here Ω  is the domain and ∂Ω  is the boundary such that 

Ω∪∂Ω = Ω  and Ω∩∂Ω = ∅ .  

In addition, we define the localisation domain and 

localisation boundary as ω   and ω∂  , respectively, with 

ω ω ω∪∂ =  and ω ω∩∂ = ∅ .  

The discontinuation function ( , )yχ ξ  is taken as 

1,    ( ),
( , )

0,    ( ,)
ω η

χ
η

ξ
ξ

ξ
η

ω
∈

=  ∉
 

that leads  

( , ), ( ),
( , )

0, ( ),
Q

Qχ
η ω

ξ
η

ω
ξ ξ

ηξ
η

∈
=  ∉

 

and 

( , ), ( ),
( , )

0, ( ).
Q

Qχ
η ω

ξ
η

ω
ξ ξ

ηξ
η

∈
=  ∉

 

As compared to BDIEs, the LBDIEs has additional two 

integrals due to the fact that ( , )χ ξ η  is discontinuance in 𝜉𝜉 ∈

ℝ𝑛𝑛. 

 

B. Localised Boundary-Domain Integral Equation 
Method for Neumann Problem 

 
For  Neumann problem, we apply the Neumann boundary 

condition ( ) ( ),Tu tξ ξ ξ= ∈∂Ω  in (2), gives 

( )

( )

( )

( )

( )

( ) ( ) ( , ) ( ) d ( )

( ) ( , ) d ( )

( ) ( , ) d ( )

( ) ( , ) d ( )
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ξ

χω η
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η

η
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ξ
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ξ

ξ

∂

Ω∩∂

∩Ω

∩∂Ω

∩Ω

− Γ

+ Γ
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= − Γ

+ Ω ∈Ω

∫
∫
∫
∫
∫

             (3) 

The solution u  is not determined uniquely, but to the 

approximation of an arbitrary constant. The uniqueness can 

be attained by adding the perturbation operator (4), 

1 ( ) d ( ),u ξ ξ
∂Ω

Γ
∂Ω ∫                              (4) 

to the Neumann LBDIE (3) and yields as described in the 

following: 

( )

( )

( )

( )
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∫

∫
∫
∫
∫
∫

         (5)         

The adding of the perturbation operator (4) is also used in 

(Mikhailov & Mohamed, 2012) for solving Neumann BDIEs. 

We use collocation method to reduce LBDIE to the finite 

system. In this method, the LBDIEs are implemented at a 

number of points on the boundary as well as interior domain. 

The nodes that are used to discretise the boundary and mesh 

the interior domain are then taken as the collocation points. 

Note that, from (5), the localised parametrix ( , )Qχ ξ η  

kernels in the 3rd, 5th and 6th integrals are generally die off for 

large r ξ η= − . Therefore, when the value of  r ξ η= − is 

close to zero i.e., whenever ( )ξ ω η∈ , the singular integrals 

incline to be the prevailing terms.  

The same case happened to its derivative ( , )T Qχξ ξ η  

kernel in the 2nd integral and the localised remainder kernel 

( , )Sχ ξ η  in 4th integral.  Therefore, excellent methods to 

handle the singularities integrations of the localised 

parametrix ( , )Qχ ξ η , its derivative ( , )T Qχξ ξ η  and  

localised remainder ( , )Sχ ξ η  are necessary. 

We chose Duffy transformation to handle all the domain 

integrations with the singularity kernels, i.e., for the 4th and 

6th integrals. For the boundary integrations with the 

singularity kernels, we used 3 different methods which are 

most appropriate for each of the integral. See (Duffy, 1982) 

for the discussion on Duffy transformation. 

We use semi-analytic method and semi-quadratic analytic 

method as proposed by (Mohamed, 2014) and (Mohamed et 

al., 2020), respectively to handle the boundary singularity in 

the 3rd integral and 2nd integral before the integrals are 

calculated by the standard Gaussian quadrature method i.e., 

Gauss-Legendre quadrature formula. The singularity 
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boundary integral in the 5th integral is calculated by Gauss-

Laguerre quadrature formula. 

 

III. RESULT AND DISCUSSION 
 
In this section, we demonstrate the numerical solution for 

perturbed Neumann LBDIE  (5) for three test domains. We 

apply exactly identical test domains like in (Mikhailov & 

Mohamed, 2012; Mohamed et al., 2016), i.e., a square, a circle 

and a parallelogram for easier comparability.  

Below is the list of the Neumann problems that we use as 

our test problems. 

Test 1: 

          
( ) ( )

( ) ( )

2
2

2
2 1

  ,   0  ,  

with   ,  ,

a f for

t

ξ ξ ξ ξ

ξ ξ ξ ξν

= = ∈Ω∪∂Ω

= ∈∂Ω
               (6) 

Test 2: 

      
( ) ( )

( ) ( )

2 2
2 2

1 2 1

  ,   2    ,  

with   2  2 ,  ,

a f for

t

ξ ξ ξ ξ ξ

ξ ξ ξ ν ξ ξ

= = ∈Ω∪∂Ω

= ∈∂Ω
        (7) 

The problems in tests 1-2  in (6) and (7)  have the exact 

solutions as in (8) and (9), respectively. 

( ) 1 ,  ,u ξ ξ ξ= ∈Ω∪∂Ω                           (8) 

( ) 2
1 ,  .u ξ ξ ξ= ∈Ω∪∂Ω                          (9) 

 The Neumann problems as in (6) and (7) are the same 

problems as tested  in (Mikhailov & Mohamed, 2012) but now 

solved for LBDIEs.  

The numerical implementations are performed by 

employing Fortran up to double precision accuracy. The 

solution of the matrix system yields from perturbed 

Neumann LBDIE (5) is attained by using LU decomposition 

method. 

We express relative errors for the estimated solution and its 

gradient for each of the domains as given below. 

1

1

max ( ) ( )
( ) ,

max ( )

j j
approx exact

j J
j

exact
j J

u u
u

u

ξ ξ

ξ
≤ ≤

≤ ≤

−
=ò                    (10) 

1

1

max ( ) ( )
( ) ,

max ( )

m m
approx c exact c

m M
m

exact c
m M

u u
u

u

ξ ξ

ξ
≤ ≤

≤ ≤

∇ −∇
∇ =

∇
ò         (11) 

where m
cξ  centres quadrilateral domain elements me . 

The following are the tables for computational relative 

errors of the approximate solution ( )uò  and of its gradient 

( )u∇ò  as given in  (10)  and (11). Tables 1-3 display the 

relative errors of approximate solutions approxu  and their 

gradient approxu∇  versus number of nodes J  for Test 1 and 

Test 2. 

 

Table 1. Relative errors on the square vs. number of nodes 

J  of the estimated solutions (a) and their gradients (b). 

 

Table 2. Relative errors on the circular domain vs. number 

of nodes J  of the estimated solutions (a) and their 

gradients (b). 

J  ( )uò   

for Test 1 

( )uò   

for Test 2 

( )u∇ò   

for Test 1 

( )u∇ò   

for Test 2 

41 2.433E-10 5.421E-2 6.302E-05 1.976E-1 

145 1.655E-10 2.241E-2 7.330E-06 1.091E-1 

545 1.357E-10 1.789E-2 7.304E-06 8.084E-2 

2113 6.308E-11 1.671E-2 6.819E-06 1.002E-1 

 

Table 3. Relative errors on parallelogram vs. number of 

nodes J  of the estimated solutions (a) and their gradients 

(b). 

J  ( )uò  

for Test 1 

( )uò
 

for Test 2 

( )u∇ò  

for Test 1 

( )u∇ò  

for Test 2 

25 6.953E-10 0.0395 4.892E-09 0.2769 

81 4.525E-10 0.1469 4.242E-09 0.5887 

289 1.908E-10 0.2575 5.801E-09 1.3156 

1089 5.961E-11 0.24514 8.989E-09 1.5559 

 
The power function that corresponds to the error's 

dependency on the total count of nodes J  is found to be 

/2~ ~J hττ−ò . In other words, J  has corresponded with a 

power function. Here h  is an average linear size of the 

elements. Through our numerical calculations for Test 1, it 

yields ~ 1τ  for both square and parallelogram domains.  

J  ( )uò  

 for Test 1 

( )uò   

for Test 2 

( )u∇ò  

 for Test 1 

( )u∇ò   

for Test 2 

25 2.211E-10 1.470E-2 1.242E-09 8.632E-2 

81 1.193E-10 1.086E-2 1.079E-09 6.605E-2 

289 6.946E-11 5.586E-3 9.48E-10 4.246E-2 

1089 4.371E-11 2.682E-3 8.447E-10 2.402E-2 
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This rate of convergence is similar to that of the non-localised 

Neumann-related BDIE in (Mikhailov & Mohamed, 2012).  

We have relatively slow convergence in circular domain, 

i.e., ~ 0.7τ . For  Test 2, it is prevailed that   ~ 0.9τ , ~ 0.8τ  

and ~ 0.9τ −  for square domain, circle and  parallelogram, 

respectively. Likewise, we have /2( ) ~ ~u J hτ τ−∇
 ò  for 

gradient error. The results for Test 1 are ~ 0.05τ , ~ 1.4τ −  

and 0.4τ = −  for square, circle and parallelogram, 

respectively. While for Test 2, we obtained 0.4τ = ,  0.3τ =  

and 0.9τ = −  for square, circle and parallelogram, 

respectively. 

The precision in Test 1 is far greater than in Test 2 due to 

the piece-wise bi-linear interpolation is exact on the linear 

solution. Therefore, only the error for integral operator 

approximation associated with numerical integration 

accuracy is concerned. On the contrary, the quadratic exact 

solution in Test 2 on the piece-wise bi-linear interpolation 

contributes to the total error. 

 
IV. CONCLUSION 

 
In this paper, we have presented the numerical results for the 

solution of Neumann LBDIEs with perturbed operator. The 

LBDIEs comprise boundary and domain integrals that deal 

with singular kernels. The singular kernels for boundary 

integrals are of logarithmic singularity and 2r−   singularity. 

Whereas the singular kernels for domain integrals are of 

logarithmic and 2r−  singularity. The LBDIEs contain the 

integrals with kernels that are only nonzero when ( ).x yω∈  

This leads the LBDIEs to the sparse system of matrix 

equations. However, the matrix obtained from the perturbed 

integral operator is dense. The perturbation operator is added 

in order to make the Neumann LBDIEs has a unique solution. 

Therefore, the final matrix system of equations is not sparse 

that enables the use of iterative methods suitable for solving 

sparse matrix system. 

The test problems that we have chosen are linear solution 

and quadratic solution. From the results we have obtained, it 

can be concluded that all methods in handling all singular 

boundary and domain integrals are reasonably good. The 

newly invented methods which are semi-analytic method in 

handling logarithmic singularity for boundary integration 

and semi-quadratic analytic method for 2r−  singularity for 

boundary integration, are proven to give high accuracy. This 

can be seen for the test problem with a linear solution that 

only involved integration error. The test problem with 

quadratic solution involves integration and interpolation 

errors where interpolation error is a more prominent error. 

For future research, it would be good if we could check how 

well both the semi-analytic method and semi-quadratic 

analytic method as compared to the use of the standard 

Gaussian quadrature i.e., Gauss-Legendre quadrature 

formula. Besides, it is excellent research if we can observe 

how these semi-analytic and semi-quadratic analytic 

methods act on various test problems, e.g., solutions 

involving complex variables. 

In this paper, the singularity for double integration is 

handled by a transformation method i.e., a Duffy 

transformation. However, in this Duffy transformation, it is 

required to sub-mesh the related quadrilateral element into 

two triangular elements. Therefore, it is suggested that the 

procedure involved in the derivation of semi-analytic and 

semi-quadratic analytic methods for singular boundary 

integration are extended to the singular domain integration. 

It is proposed that this new method for singular domain 

integration if successfully derived can be a great alternative 

to the transformation method to handle singularity of double 

integration. The well-known transformation methods are 

e.g., singular integral are Duffy transformation and 

transformation.  

Other future research that we may consider is to extend the 

use of the semi-analytic and semi-quadratic analytic methods 

to the BDIE/BDIDE obtained from the Helmholtz and heat 

conduction equations with variable coefficient.  

It would be a good effort if we could extend our experiments 

to further test domains with various test problems to see how 

the results will react to the distortion of interior mesh 

elements. It is also suggested to attempt the use of triangular 

mesh elements instead of quadrilateral mesh elements. 

 



ASM Science Journal, Volume 18, 2023  
 

7 

V. ACKNOWLEDGEMENT 
 
The authors would like to express their sincere gratitude and 

appreciation to Universiti Pendidikan Sultan Idris for 

providing financial support under Geran Penyelidikan  

 
VI. REFERENCES 

 
 

Beer, G, Smith, I & Duenser, C 2010, The Boundary Element 

Method with Programming: For Engineers and 

Scientists (Softcover reprint of hardcover 1st ed. 2008 ed.), 

Springer. 

Brandenburg, J & Clemmons, L 2012, Analysis of numerical 

differential equations and finite element method, College 

Publishing House, Delhi. 

Chaillat, S, Darbas, M & le Louër, F 2017, ‘Fast iterative 

boundary element methods for high-frequency scattering 

problems in 3D elastodynamics’, Journal of Computational 

Physics, vol. 341, 429–446, doi: 10.1016/j.jcp.2017.04.020 

Costaz, P 2002, A Practical Guide to Boundary Element 

Methods with the Software Library BEMLIB, Chapman & 

Hall/CRC, Boca Raton, Florida. 

Duffy, MG 1982, ‘Quadrature over a pyramid or cube of 

integrands with a singularity at a vertex,’ SIAM J Numer. 

Analy, vol. 19, pp. 1260–1262. 

Katsikadelis, JT 2016, The Boundary Element Method for 

Engineers and Scientists, Second Edition: Theory and 

Applications (2nd ed.), Academic Press. 

Kirkup, S 2019, ‘The Boundary Element Method in Acoustics: 

A Survey’, Applied Sciences, vol. 9, no. 8, p. 1642. doi: 

10.3390/app9081642 

Melenk, JM & Xenophontos, C 2015, ‘Robust exponential 

convergence of hp -FEM in balanced norms for singularly 

perturbed reaction-diffusion equations,’ Calcolo, vol. 53, 

no. 1, pp. 105–132. doi: 10.1007/s10092-015-0139-y 

Melenk, JM, Xenophontos, C & Oberbroeckling, L 2012, 

‘Robust exponential convergence of hp FEM for singularly 

perturbed reaction-diffusion systems with multiple 

scales’, IMA Journal of Numerical Analysis, vol. 33, no. 2, 

pp. 609–628. doi: 10.1093/imanum/drs013  

Mikhailov, SE & Mohamed, NA 2012, ‘Numerical solution 

and spectrum of boundary-domain integral equation for the 

Neumann BVP with a variable coefficient’, International 

Journal of Computer Mathematics, vol. 89, no. 11, pp. 1-17. 

 

Universiti Berteraskan Pendidikan (GPUBP) with the code 

number 2022-0135-107-01. This grant has greatly facilitated 

the research work presented in this article and allowed us to 

carry out our research smoothly. 

 

 

 

 

Mikhailov, SE 2002, ‘Localized boundary-domain integral 

formulations for problems with variable coefficients’, 

Engineering Analysis with Boundary Elements, vol. 26, pp. 

681-690. 

Mohamed, NA 2014, ‘Semi-Analytic Integration Method for 

Direct United Boundary-Domain Integro-Differential 

Equation Related to Dirichlet Problem’, International 

Journal of Applied Physics and Mathematics, vol. 4, no. 3, 

pp. 149-154. 

Mohamed, NA, Mohamed, NF, Mohamed, NH & Yusof, MRM 

2016a, ‘Numerical Solution of Dirichlet Boundary-Domain 

Integro-Differential Equation with Less Number of 

Collocation Points’, Applied Mathematical Sciences, vol. 10, 

no. 50, pp. 2459-2469. 

Mohamed, NA, Ibrahim, NF, Yusof, MRM, Mohamed, NF & 

Mohamed, NH 2016b, ‘Implementation of Boundary-

Domain Integro-Differential Equation for Dirichlet BVP 

with Variable Coefficient,’ Jurnal Teknologi, vol. 78, no. 6-

5, pp. 71-77. 

Mohamed, NA, Mohamed, NF, Ibrahim, NF, Ahmat, N & 

Mohamed, NH 2020, ‘Semi Quadratic Analytic Method for 

Neumann Localized Boundary-Domain Integral 

Equations,’ International Journal of Engineering Trends 

and Technology, pp. 75–81. doi: 

10.14445/22315381/cati1p213 

Nolasco, C, Afanador GN & Guerrero, GG 2020, ‘Finite 

difference method applied to heat transfer in 

polymers,’ Journal of Physics: Conference Series, 1672, p. 

012003, doi: 10.1088/1742-6596/1672/1/012003 

Sutradhar, A, Paulino, G & Gray, LJ 2008, Symmetric 

Galerkin Boundary Element Method, Springer. 

Wang, SB, Zheng, HH, Xiao, JJ, Lin, ZF & Chan, CT 2012, 

‘Fast multipole boundary element method for three 

dimensional electromagnetic scattering 

problem’, International Journal of Computational 

Materials Science and Engineering, vol. 1, no. 4, p. 

1250038. doi: 10.1142/s2047684112500388 



ASM Science Journal, Volume 18, 2023  
 

8 

Xu, Y & Jackson, RL 2018, ‘Boundary element method (BEM) 

applied to the rough surface contact vs. BEM in 

computational mechanics’, Friction, vol. 7, no. 4, pp. 359–

371. doi: 10.1007/s40544-018-0229-3 

 
 


