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We wrote this paper to study in detail the mathematical methods used in deriving the parameters 𝑝𝑝′1, 𝑝𝑝′2, 

𝑥𝑥′1, 𝑥𝑥′2, 𝑀𝑀, 𝐾𝐾 and 𝑒𝑒2𝜂𝜂   in the research papers by Han et al. (1999), Makarov (2018a), Han et al. (1993), 

and Han et al. (1995) to find the Schmidt modes 𝛬𝛬𝑘𝑘  in quantum entanglement. Here, we have analysed 

and developed a thorough calculation in exploring the rationales behind the existence of these parameters 

in two and three-coupled harmonic oscillators. Various mathematical approaches were applied in the 

study, ranging from polynomials and linear algebra to trigonometry and the Pythagorean theorem. We 

found the parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂   using the matrices’ determinants and eigenvalues. With these rationales 

in deriving the parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂  in the research papers for the two-coupled harmonic oscillators, we 

have formulated similar parameters for three-coupled harmonic oscillators as the conclusion of our 

study. 
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I. INTRODUCTION 

 
The Hamiltonian of a two-coupled harmonic oscillators 

system from a few research papers (Han et al., 1999; 

Makarov, 2018a; Han et al., 1993; Han et al., 1995) were as 

follows: 

 𝐻𝐻12 = 1
2
� 1
𝑚𝑚1
𝑝𝑝12 + 1

𝑚𝑚2
𝑝𝑝22 + 𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥1𝑥𝑥2�,         (1) 

where 𝑚𝑚𝑘𝑘  denotes different masses, 𝑝𝑝𝑘𝑘  is the momentum 

variable, 𝑥𝑥𝑘𝑘  is the coordinate variable with 𝑘𝑘 = 1, 2, and 𝐴𝐴, 𝐵𝐵 

and 𝐶𝐶  are the coupling constants. 𝐻𝐻𝑛𝑛2  denotes the 

Hamiltonian for a two-coupled harmonic oscillator system, 

where 𝑛𝑛 represents the sequence of the Hamiltonian. 

The solution of the stationary Schrodinger equation with 

the Hamiltonian in Equation (1) is known and stated in a 

previous study (Han et al., 1999). However, problems arise 

due to the complexity of calculating and analysing the 

quantum entanglement for such a system. Usually, the 

quantum entanglement is analysed for the ground state of an 

oscillator. According to Ekert and Knight (1995), this is 

because the Schmidt modes 𝛬𝛬𝑘𝑘  that were used in the analysis 

of quantum entanglement was not calculated in a general 

form. 

In the previous research papers (Han et al., 1999; Makarov, 

2018a; Han et al., 1993; Han et al., 1995), there are 

parameters 𝑝𝑝′1 , 𝑝𝑝′2 , 𝑥𝑥′1 , 𝑥𝑥′2  and 𝑀𝑀  in the Kinetic Energy 

portion. There is also an appearance of tan 2𝛼𝛼 following the 

diagonalisation of the Potential Energy portion in the 

Hamiltonian. Later, there are two more parameters 𝐾𝐾  and 

𝑒𝑒2𝜂𝜂, in finding the Schmidt modes 𝛬𝛬𝑘𝑘. The “how and why” of 

the existence of these pre-Schmidt mode parameters and 
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tan 2𝛼𝛼 were not comprehensively explained in the research 

papers. Thus, they exhibit difficulty in understanding them.  

Our work can be considered a mild scoping review. It is an 

exploratory project that systematically probes the literature 

on identifying the key concepts, theories, sources of evidence 

and gaps in the research. We identified the knowledge gap 

and hence explored the rationale behind the arrival of those 

parameters. However, we have limited our study to only as 

far as the parameters 𝐾𝐾  and 𝑒𝑒2𝜂𝜂 . Subsequently, using the 

two-coupled harmonic oscillators system from the research 

papers, our study expanded to a three-coupled harmonic 

oscillators system. 

The Hamiltonian for a three-coupled harmonic oscillator 

designed using Equation (1) as guidance: 

𝐻𝐻13 = 1
2
�

1
𝑚𝑚1
𝑝𝑝12 + 1

𝑚𝑚2
𝑝𝑝22 + 1

𝑚𝑚3
𝑝𝑝32 + 𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥32 + 𝐷𝐷𝑥𝑥1𝑥𝑥2

+𝐸𝐸𝑥𝑥1𝑥𝑥3 + 𝐹𝐹𝑥𝑥2𝑥𝑥3
�, (2) 

where 𝑚𝑚𝑘𝑘  denotes different masses of the three-coupled 

harmonic oscillators together with their respective 

momentums 𝑝𝑝𝑘𝑘  and their coordinate variables 𝑥𝑥𝑘𝑘 , with 𝑘𝑘 =

1, 2, 3 and their coupling constants 𝐴𝐴, 𝐵𝐵 , 𝐶𝐶 , 𝐷𝐷 , 𝐸𝐸  and 𝐹𝐹 . 𝐻𝐻𝑛𝑛3   

denotes the Hamiltonian for the three-coupled harmonic 

oscillators system, which 𝑛𝑛  represents the sequence of the 

Hamiltonian. 

In Section II, we designed the Methodology into two 

subsections: detailed calculation methods to find the kinetic 

and potential energy. Here, we investigate the parameters 

involved in two-coupled and three-coupled harmonic 

oscillator systems. In Section III, we showed the verdicts of 

our study. Additionally, we discussed various representations 

of the parameters, how the coordinate rotation angle α can 

influence these parameters, compared our work with other 

researchers and generalised for 𝑁𝑁 -coupled harmonic 

oscillators system. In Section IV, we have concluded our work 

on the parameters of the pre-Schmidt mode. 

 
II. MATERIALS AND METHOD 

 
The ultimate goal here is to solve the puzzle of how the 

parameters K and 𝑒𝑒2𝜂𝜂  in the two-coupled harmonic oscillator 

system derived in the research papers of Han et al. (1999), 

Makarov (2018a), Han et al. (1993), and Han et al. (1995) and 

finally to extract the same parameters for the three-coupled 

harmonic oscillators system. 

Before that, we attempted to close the gaps among 

equations where details were omitted in the original pieces of 

literature. The mini titles Closing the Gap and Rationale for 

Parameters explained those missing links appropriately in 

stages in the following sections. We successfully clarified the 

derivation of those parameters and gleaned the parameter 𝐾𝐾 

for the three-coupled harmonic oscillators system. However, 

the parameter 𝑒𝑒2𝜂𝜂  is futile for a three-coupled harmonic 

oscillators system due to its complexity in deriving and 

utilising it for further calculations. 

Appropriate mathematical methods were applied to untie 

the knots in those research papers. Linear algebra is the 

primary tool used to uncouple the potential energy and the 

kinetic energy portions. The method of diagonalisation and 

determinants were used in explaining the parameters. 

Trigonometry and the Pythagorean theorem were also 

essential instruments in this study. 

We have divided the methodology into the following two 

subsections, Kinetic Energy Portion and Potential Energy 

Portion. Each subsection elaborates on two-coupled and 

three-coupled harmonic oscillator systems accordingly. 

 
A. Kinetic Energy 

 
The left part of the Hamiltonian denotes the kinetic energy 

portion. In Equation (1), the kinetic energy is: 

1
2 �

1
𝑚𝑚1

𝑝𝑝12 +
1
𝑚𝑚2

𝑝𝑝22�, 

and from Equation (2), the kinetic energy is: 

1
2 �

1
𝑚𝑚1

𝑝𝑝12 +
1
𝑚𝑚2

𝑝𝑝22 +
1
𝑚𝑚3

𝑝𝑝32�. 

The following subsection explained the changes that took 

place in the kinetic energy portion of the two-coupled system 

in the works of literature. We utilised that to further develop 

a similar operation on the three-coupled system. 

 
1. Two-coupled harmonic oscillators 

 
We began the study on the two-coupled harmonic oscillators 

system. Han et al. (1995) jumps from Equation (1) to: 

 𝐻𝐻22 = 1
2𝑀𝑀

(𝑝𝑝1′2 + 𝑝𝑝2′2) + 1
2

(𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥1𝑥𝑥2),            (3) 
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without clear details. Thus, we attempted to find the missing 

details next. 

 
Closing the gap 

For a start, one must diagonalise the potential energy portion, 

which is a second-degree polynomial (quadratic expression) 

in terms of 𝑥𝑥1 and 𝑥𝑥2 by referring to Han et al. (1999), Han et 

al. (1995), and Aravind (1989). This is possible by a single 

rotation using coordinate rotation. However, the momentum 

variables will also undergo the same rotation. Hence, the 

uncoupling process of the potential energy by rotation alone 

will cause the coupling of the two kinetic energy terms. 

For simplification, the kinetic energy portion in Equation 

(1) is brought to rotationally invariant form (Han et al., 1999; 

McDermott & Redmount, 2004) so that: 

 �𝑝𝑝1
′

𝑝𝑝2′
� = �𝛾𝛾1 0

0 𝛾𝛾2
� �𝑝𝑝1𝑝𝑝2

�, (4) 

where 𝛾𝛾𝑖𝑖 = �𝑚𝑚𝑗𝑗

𝑚𝑚𝑖𝑖
�
1/4

with 𝑖𝑖, 𝑗𝑗 = 1, 2  such that 𝑖𝑖 ≠ 𝑗𝑗 . The same 

conditions for 𝑖𝑖  and 𝑗𝑗  as in Equation (4) can be applied to 

Equations (5), (8) and (9). 

Next, one can perform matrix multiplication to Equation 

(4). By comparing both sides of the matrix equation, 𝑝𝑝𝑖𝑖 can be 

written in terms of 𝑝𝑝𝑖𝑖′. Finally, by squaring them, we arrived 

at: 

 𝑝𝑝𝑖𝑖2 = �𝑚𝑚𝑖𝑖
𝑚𝑚𝑗𝑗
�
1/2

𝑝𝑝𝑖𝑖′2. (5) 

In addition, we worked on the conversion of the kinetic 

energy portion in Equation (1) by substituting Equation (5) 

as given below: 

1
2 �

1
𝑚𝑚1

𝑝𝑝12 +
1
𝑚𝑚2

𝑝𝑝22� =  
1
2�

1
𝑚𝑚1

��
𝑚𝑚1

𝑚𝑚2
�
1/2

𝑝𝑝1′2�

+
1
𝑚𝑚2

��
𝑚𝑚2

𝑚𝑚1
�
1/2

𝑝𝑝2′2�� ; 

and then simplified to: 

1
2 �

1
𝑚𝑚1

𝑝𝑝12 +
1
𝑚𝑚2

𝑝𝑝22� =
1
2
�

1
(𝑚𝑚1𝑚𝑚2)1/2 𝑝𝑝1

′2 +
1

(𝑚𝑚1𝑚𝑚2)1/2 𝑝𝑝2
′2�. 

When 𝑀𝑀 = (𝑚𝑚1𝑚𝑚2)1/2, the above equation will transform into 

 
1
2
� 1
𝑚𝑚1
𝑝𝑝12 + 1

𝑚𝑚2
𝑝𝑝22� = 1

2𝑀𝑀
(𝑝𝑝1′2 + 𝑝𝑝2′2).          (6) 

We would like to emphasise here that in the literature by 

Han et al. (1999), there was a leap from Equation (4) direct 

to Equation (6). Hence, the above explanation was meant to 

fill the gap. Besides that, the reason for the appearance of the 

parameters in the main diagonal in Equation (4) is also 

unknown in the literature. Thus, the rationale for these 

parameters can be found next. 

 
The rationale for Parameters 𝜸𝜸𝒊𝒊 

The basic idea here is to convert the kinetic energy portion to 

a simpler form. To meet the purpose, the left-hand side of 

Equation (6) is to be written as its right-hand side. Therefore, 

for simplicity, the parameters 𝑚𝑚1  and 𝑚𝑚2  were 

predetermined as a new parameter 𝑀𝑀. 

Firstly, the Equation (6) is transformed into matrix form, as 

the method given by Merdaci and Jellal (2020): 

1
2

(𝑝𝑝1 𝑝𝑝2)�

1
𝑚𝑚1

0

0 1
𝑚𝑚2

� �𝑝𝑝1𝑝𝑝2
� = 1

2
(𝑝𝑝1′ 𝑝𝑝2′ )�

1
𝑀𝑀

0

0 1
𝑀𝑀

� �𝑝𝑝1
′

𝑝𝑝2′
�.       (7) 

Next, we equated the determinants for both square 

matrices in Equation (7) and found 𝑀𝑀 = (𝑚𝑚1𝑚𝑚2)1/2, which is 

then substituted into Equation (6). Subsequently, equating 

the terms 𝑝𝑝𝑖𝑖2 with 𝑝𝑝𝑖𝑖′2, square rooting them and changing the 

subject, we arrived at: 

 𝑝𝑝𝑖𝑖′ = �
𝑚𝑚𝑗𝑗

𝑚𝑚𝑖𝑖
�
1/4

𝑝𝑝𝑖𝑖 . (8) 

Finally, 𝑝𝑝1′  and 𝑝𝑝2′  from Equation (8) can be written into 

matrix form exactly as Equation (4). So, we have elucidated 

above the relevance behind introducing the parameters 𝛾𝛾𝑖𝑖  in 

Equation (4). 

In addition, the scale transformation above does vary the 𝑥𝑥1 

and 𝑥𝑥2 variables too as explained by Han et al. (1999). When 

one attempts canonical transformations, the transformation 

will lead to: 

 �𝑥𝑥1
′

𝑥𝑥2′
� = �𝛾𝛾1 0

0 𝛾𝛾2
� �𝑥𝑥1𝑥𝑥2

�, (9) 

  where 𝛾𝛾𝑖𝑖 = �𝑚𝑚𝑖𝑖
𝑚𝑚𝑗𝑗
�
1/4

. 

However, the scale transformations on the position 

variables are inversely proportional to those of their 



ASM Science Journal, Volume 18, 2023  

 

4 

conjugate momentum variables. This is due to Hamiltonian 

formalism where the position and momentum variables are 

independent variables. Thus, the canonical transformation 

will make arise to a unitary transformation in quantum 

mechanics. 

Therefore, the Hamiltonian can be written as the 

Hamiltonian in Equation (3). In the next section, we explore 

into three-coupled harmonic oscillators system. 

 
2. Three-coupled harmonic oscillators 

 
For the three-coupled harmonic oscillators system, Equation 

(2) can be written as: 

𝐻𝐻23 =
1

2𝑀𝑀
(𝑝𝑝1′2 + 𝑝𝑝2′2 + 𝑝𝑝3′2) 

       + 1
2

(𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥32 + 𝐷𝐷𝑥𝑥1𝑥𝑥2 + 𝐸𝐸𝑥𝑥1𝑥𝑥3 + 𝐹𝐹𝑥𝑥2𝑥𝑥3).  (10) 

  

Here, we can see that there is a sudden leap from Equation 

(2) to Equation (10). In the following subsection, we 

elaborate clearly on how we convert Equation (2) to Equation 

(10). 

 
Closing the gap 

Based on Equation (4), we brought the kinetic energy portion 

of Equation (2) to rotationally invariant form by doing the 

following: 

 �
𝑝𝑝1′

𝑝𝑝2′

𝑝𝑝3′
� = �

𝛾𝛾1 0 0
0 𝛾𝛾2 0
0 0 𝛾𝛾3

��
𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
�, (11) 

where 𝛾𝛾𝑖𝑖 = �𝑚𝑚𝑗𝑗𝑚𝑚𝑘𝑘

𝑚𝑚𝑖𝑖
2 �

1/6
 with 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1, 2, 3 such that 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘 . 

The same conditions for 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 as in Equation (11) can be 

applied for Equations (12), (15) and (16). 

Next, we performed matrix multiplication to Equation (11). 

Then, we compared both sides of the matrix equation and 

wrote 𝑝𝑝𝑖𝑖 in terms of 𝑝𝑝𝑖𝑖′. Finally, by squaring them we achieved 

the following result: 

𝑝𝑝𝑖𝑖2 = � 𝑚𝑚𝑖𝑖
2

𝑚𝑚𝑗𝑗𝑚𝑚𝑘𝑘
�
1/3

𝑝𝑝𝑖𝑖′2. (12) 

In the next step, we worked on the conversion of the kinetic 

energy portion in Equation (2) by substituting Equation (12): 

1
2 �

1
𝑚𝑚1

𝑝𝑝12 +
1
𝑚𝑚2

𝑝𝑝22 +
1
𝑚𝑚3

𝑝𝑝32� =  

1
2�

1
𝑚𝑚1

��
𝑚𝑚1
2

𝑚𝑚2𝑚𝑚3
�
1/3

𝑝𝑝1′2� +
1
𝑚𝑚2

��
𝑚𝑚2
2

𝑚𝑚1𝑚𝑚3
�
1/3

𝑝𝑝2′2�

+
1
𝑚𝑚3

��
𝑚𝑚3
2

𝑚𝑚1𝑚𝑚2
�
1/3

𝑝𝑝3′2�� ; 

and then simplified to: 

1
2
�

1
𝑚𝑚1

𝑝𝑝12 +
1
𝑚𝑚2

𝑝𝑝22 +
1
𝑚𝑚3

𝑝𝑝32� = 

1
2 �

1
(𝑚𝑚1𝑚𝑚2𝑚𝑚3)1/3 𝑝𝑝1

′2 +
1

(𝑚𝑚1𝑚𝑚2𝑚𝑚3)1/3 𝑝𝑝2
′2 +

1
(𝑚𝑚1𝑚𝑚2𝑚𝑚3)1/3 𝑝𝑝3

′2�. 

Next, we substituted 𝑀𝑀 = (𝑚𝑚1𝑚𝑚2𝑚𝑚3)1/3, which also can be 

found by Merdaci and Jellal (2020), the above equation will 

transform into: 

1
2
� 1
𝑚𝑚1
𝑝𝑝12 + 1

𝑚𝑚2
𝑝𝑝22 + 1

𝑚𝑚3
𝑝𝑝32� = 1

2𝑀𝑀
(𝑝𝑝1′2 + 𝑝𝑝2′2 + 𝑝𝑝3′2).        (13) 

We will revisit Equation (13) later in the next part. We will 

look into the reason for the parameters in the main diagonal 

of Equation (11). 

The rationale for Parameters 𝜸𝜸𝒊𝒊 

Similar to the two-coupled harmonic oscillators system, the 

fundamental idea is to convert the kinetic energy portion to a 

simpler form as in Equation (13). Again, the parameters 𝑚𝑚1, 

𝑚𝑚2  and 𝑚𝑚3 were predetermined as a new parameter 𝑀𝑀. 

We started by transforming Equation (13) into matrix form, 

similar to the method by Merdaci and Jellal (2020): 

1
2

(𝑝𝑝1 𝑝𝑝2 𝑝𝑝3)

⎝

⎜
⎜
⎜
⎛

1
𝑚𝑚1

0 0

0
1
𝑚𝑚2

0

0 0
1
𝑚𝑚3⎠

⎟
⎟
⎟
⎞
�
𝑝𝑝1
𝑝𝑝2
𝑝𝑝3
� 

= 1
2

(𝑝𝑝1′ 𝑝𝑝2′   𝑝𝑝3′ )

⎝

⎜
⎛

1
𝑀𝑀

0 0

0 1
𝑀𝑀

0

0 0 1
𝑀𝑀⎠

⎟
⎞
�
𝑝𝑝1′

𝑝𝑝2′

𝑝𝑝3′
�.                                    (14) 

In the next step, we equated the determinant for both 

square matrices in Equation (14) and derived 𝑀𝑀 =

(𝑚𝑚1𝑚𝑚2𝑚𝑚3)1/3,  which is then substituted into Equation (13). 

Thereafter, equating the terms 𝑝𝑝𝑖𝑖2  with 𝑝𝑝𝑖𝑖′2  square rooting 

them and changing the subjects and finally finding: 
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 𝑝𝑝𝑖𝑖′ = �
𝑚𝑚𝑗𝑗𝑚𝑚𝑘𝑘

𝑚𝑚𝑖𝑖
2 �

1/6
𝑝𝑝𝑖𝑖 . (15) 

Eventually, 𝑝𝑝1′ , 𝑝𝑝2′  and 𝑝𝑝3′  from Equation (15) can be 

rearranged into matrix form exactly as Equation (11). Hence, 

the discussion above explained the reason for introducing the 

parameters 𝛾𝛾𝑖𝑖  in Equation (11). 

Based on Equation (9) and using the two-coupled harmonic 

system (Han et al., 1999) as guidance, the scale 

transformation above does vary the 𝑥𝑥1 , 𝑥𝑥2  and 𝑥𝑥3  variables 

too. The attempt at canonical transformations will provide: 

 �
𝑥𝑥1′

𝑥𝑥2′

𝑥𝑥3′
� = �

𝛾𝛾1 0 0
0 𝛾𝛾2 0
0 0 𝛾𝛾3

��
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�,                         (16) 

where 𝛾𝛾𝑖𝑖 = � 𝑚𝑚𝑖𝑖
2

𝑚𝑚𝑗𝑗𝑚𝑚𝑘𝑘
�
1/6

. 

Just as in the two-coupled harmonic oscillators system, the 

scale transformations on the position variables are inversely 

proportional to those of their conjugate momentum 

variables. Since the position and momentum variables are 

independent variables, the canonical transformation will lead 

to a unitary transformation. Thus, the Hamiltonian can be 

written as the Equation (10). 

We have discussed the kinetic energy portion in detail in 

this subsection. In the next subsection, we explored the 

potential energy portion. 

 
B. Potential Energy 

 
The potential energy portion is on the right part of the 

Hamiltonian. In Equation (1), the kinetic energy is: 

1
2

(𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥1𝑥𝑥2), 

and from Equation (2), the kinetic energy reads: 

1
2

(𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥32 + 𝐷𝐷𝑥𝑥1𝑥𝑥2 + 𝐸𝐸𝑥𝑥1𝑥𝑥3 + 𝐹𝐹𝑥𝑥2𝑥𝑥3). 

The following subsection elaborated on the transformations 

in the potential energy portion of a two-coupled system in the 

kinds of literature. Using that information as a tool, we 

worked on the potential energy for the three-coupled system. 

 

 

 
 

1. Two-coupled harmonic oscillators 
 
Using Equation (3), one can start to decouple Hamiltonian by 

performing the coordinate rotation (Aravind, 1989; Kim & 

Noz, 1991) to the potential energy portion (Han et al., 1999; 

Han et al., 1995; Han et al., 1993) that is: 

 �
𝑦𝑦1
𝑦𝑦2� = �cos𝛼𝛼 − sin𝛼𝛼

sin𝛼𝛼 cos𝛼𝛼 � �
𝑥𝑥1
𝑥𝑥2�.                         (17) 

Here, the system is diagonalised when the angle of rotation 

α becomes: 

 tan 2𝛼𝛼 = 𝐶𝐶
𝐴𝐴−𝐵𝐵

. (18) 

The potential energy portion from Equation (3) 

transformed into Equation (17) (Park, 2018; Han et al., 1999; 

Han et al., 1995; Han et al., 1993). Finally, Equation (18) was 

presented in the paper. However, adequate steps in deriving 

the equations were not presented. The details can be found in 

the next part. 

 
Closing the Gap 

Before decoupling, the quadratic expression 𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 +

𝐶𝐶𝑥𝑥1𝑥𝑥2  from Equation (3) can be transformed into a (2 × 2) 

matrix as follows: 

 𝑉𝑉2 = (𝑥𝑥1 𝑥𝑥2)�
𝐴𝐴 1

2
𝐶𝐶

1
2
𝐶𝐶 𝐵𝐵

��
𝑥𝑥1
𝑥𝑥2�, (19) 

where 𝑉𝑉2  is the potential matrix of a two-coupled system. 

After performing coordinate rotation to the square matrix, 𝑉𝑉2 

will become 𝑉𝑉new2  (Randles et al., 2019): 

 𝑉𝑉new2 = (𝑅𝑅𝑇𝑇)(𝑉𝑉2)(𝑅𝑅), (20) 

where 𝑅𝑅 = �cos𝛼𝛼 − sin𝛼𝛼
sin𝛼𝛼 cos𝛼𝛼 �  is the rotation coordinate and          

𝑅𝑅𝑇𝑇 = � cos𝛼𝛼 sin𝛼𝛼
−sin𝛼𝛼 cos𝛼𝛼�   is the transpose of 𝑅𝑅 . When the 

matrices of 𝑅𝑅𝑇𝑇, 𝑉𝑉2 and 𝑅𝑅 were replaced in Equation (20), we 

arrived at: 

𝑉𝑉new2 = � cos𝛼𝛼 sin𝛼𝛼
−sin𝛼𝛼 cos𝛼𝛼��

𝐴𝐴
1
2
𝐶𝐶

1
2
𝐶𝐶 𝐵𝐵

��cos𝛼𝛼 − sin𝛼𝛼
sin𝛼𝛼 cos𝛼𝛼 �. 

Through this coordinate rotation, the kinetic energy 

portion in (3) remains invariant. So, one can perform 

decoupling by diagonalisation. After performing expansion 

and simplification, the resultant matrix 𝑉𝑉new2  is: 
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 𝑉𝑉new2 =  �𝛿𝛿 𝜉𝜉
𝜉𝜉 𝜁𝜁�, (21) 

 

where 

𝛿𝛿 = 𝐴𝐴 cos2𝛼𝛼 + 𝐵𝐵 sin2𝛼𝛼 + 𝐶𝐶 sin𝛼𝛼 cos𝛼𝛼 ,

𝜉𝜉 =
𝐶𝐶
2

 (cos2𝛼𝛼 − sin2𝛼𝛼) + (𝐵𝐵 − 𝐴𝐴) sin𝛼𝛼 cos𝛼𝛼 ,

𝜁𝜁 =  𝐴𝐴 sin2𝛼𝛼 + 𝐵𝐵 cos2𝛼𝛼 −  𝐶𝐶 sin𝛼𝛼 cos𝛼𝛼 .
 

Now, by setting the off-diagonal (𝜉𝜉)  in Equation (21) to 

zero, the equation obtained is: 

𝐶𝐶
2  (cos2𝛼𝛼 − sin2𝛼𝛼) + (𝐵𝐵 − 𝐴𝐴) sin𝛼𝛼 cos𝛼𝛼 = 0. 

By applying the trigonometric functions cos 2𝛼𝛼 =  cos2𝛼𝛼 −

sin2𝛼𝛼 and sin 2𝛼𝛼 = 2 sin𝛼𝛼 cos𝛼𝛼, the equation is reduced to 

𝐶𝐶
2

(cos 2𝛼𝛼) + �
𝐵𝐵 − 𝐴𝐴

2 � (sin 2𝛼𝛼) = 0. 

Continuing further, the equation is simplified to Equation 

(18). A similar equation was also used by Barnett and Phoenix 

(1992) in the process of working with the Schmidt 

decomposition. 

In Section III, we continued our discussion on different 

values of 𝛼𝛼  and their effects on tan𝛼𝛼. Different values of 𝛼𝛼 

also influence the parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂. 

When we continued studying the papers from Han et al. 

(1993), Han et al. (1995), Makarov (2018a), and Han et al. 

(1999), we found that the following parameters were 

introduced: 

𝐾𝐾 = �𝐴𝐴𝐵𝐵 − 𝐶𝐶2

4
, 𝑒𝑒2𝜂𝜂 = 𝐴𝐴+𝐵𝐵+�(𝐴𝐴−𝐵𝐵)2+𝐶𝐶2 

�4𝐴𝐴𝐵𝐵−𝐶𝐶2
. (22) 

Jellal et al. (2005) stated that the parameter 𝑒𝑒2𝜂𝜂  was 

analysed further and written in a slightly different form as: 

𝑒𝑒2𝜂𝜂 =
𝐴𝐴 + 𝐵𝐵 + �(𝐴𝐴 − 𝐵𝐵)2 + 𝐶𝐶2

2𝐾𝐾
 . 

However, there were inadequate explanations given for the 

existence of these parameters in the pieces of literature 

mentioned above. Hence, we attempted to clarify this next. 

 
The rationale for Parameters 𝑲𝑲 and 𝒆𝒆𝟐𝟐𝟐𝟐 

For a start, by utilising Equation (18), the image in Figure (1) 

was delineated. 

 

 

Figure 1. Relationship among the sides of a right-angled 

triangle with an angle of 2𝛼𝛼. 

 
It is discovered that the determinant and eigenvalues for 

the potential energy matrix in Equation (19) explained the 

two new parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂  in Equation (22). The length 

of the hypotenuse from Figure 1 can be seen as part of the 

numerator in the parameter 𝑒𝑒2𝜂𝜂. Despite the resemblance of 

the hypotenuse in parameter 𝑒𝑒2𝜂𝜂, it does not fully explain the 

parameters. 

It was found that the parameter 𝐾𝐾 is the square root of the 

determinant for the matrix 𝑉𝑉2: 

 𝐾𝐾 = �|𝑉𝑉2| = �𝐴𝐴𝐵𝐵 − 1
4
𝐶𝐶2 , (23) 

where 

Det 𝑉𝑉2 = �
𝐴𝐴 1

2
𝐶𝐶

1
2
𝐶𝐶 𝐵𝐵

� = 𝐴𝐴𝐵𝐵 − �1
2
𝐶𝐶�

2
. 

There’s an important point that needs to be observed here, 

mathematically the Det [𝑉𝑉2] is equal to the Det [𝑉𝑉new2 ]. The 

parameter 𝑒𝑒2𝜂𝜂  on the other hand is the ratio of the 

eigenvalues 𝜆𝜆 of the matrix 𝑉𝑉2 to the parameter 𝐾𝐾: 

 𝑒𝑒2𝜂𝜂 = 𝜆𝜆
 𝐾𝐾

 . (24) 

The proof for the above argument is discussed next. Firstly, 

the determinant for 𝑉𝑉2 − 𝐼𝐼𝜆𝜆 is to be found and then equate 

with zero, where 𝐼𝐼  is the identity matrix. Thus, the 

characteristic polynomial for 𝜆𝜆 is obtained as below: 

𝜆𝜆2 − (𝐴𝐴 + 𝐵𝐵)𝜆𝜆 + �𝐴𝐴𝐵𝐵 −
1
4
𝐶𝐶2� = 0. 

The characteristic polynomial for 𝜆𝜆 above is in the form of 

quadratic equation 𝑎𝑎𝜆𝜆2 + 𝑏𝑏𝜆𝜆 + 𝑐𝑐 = 0 . Hence, the 𝜆𝜆  can be 

found by using the formula of roots of the quadratic equation: 

𝜆𝜆 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑎𝑎  . 



ASM Science Journal, Volume 18, 2023  

 

7 

By substituting 𝑎𝑎 = 1,  𝑏𝑏 =  −(𝐴𝐴 + 𝐵𝐵) and 𝑐𝑐 = 𝐴𝐴𝐵𝐵 − 1
4
𝐶𝐶2 

followed by rearrangement, 𝜆𝜆 will be simplified to: 

  𝜆𝜆 = 𝐴𝐴+𝐵𝐵±�(𝐴𝐴−𝐵𝐵)2+𝐶𝐶2

2
 . (25) 

Again, there’s an important point here. The eigenvalues of 

𝑉𝑉2  and the eigenvalues of its rotational matrix, 𝑉𝑉new2   are 

equal. However, the process of finding the eigenvalues using 

𝑉𝑉new2   is more tedious. Thus, for simplicity, 𝑉𝑉2 was used in our 

study. Subsequently, the parameter 𝑒𝑒2𝜂𝜂 can be derived by: 

𝑒𝑒2𝜂𝜂 =
𝜆𝜆
 𝐾𝐾

=
𝐴𝐴+𝐵𝐵±�(𝐴𝐴−𝐵𝐵)2+𝐶𝐶2

2

�𝐴𝐴𝐵𝐵 − 𝐶𝐶2

4

 , 

and finally simplified to: 

 𝑒𝑒2𝜂𝜂 = 𝐴𝐴+𝐵𝐵±�(𝐴𝐴−𝐵𝐵)2+𝐶𝐶2

�4𝐴𝐴𝐵𝐵−𝐶𝐶2
 . (26) 

The derivation above has proven the rationale for the 

parameter 𝑒𝑒2𝜂𝜂  in the literature mentioned. Nevertheless, the 

parameter 𝑒𝑒2𝜂𝜂  in Equation (26) has some differences 

compared to Equation (22) and in various kinds of literature 

too. Therefore, the parameter 𝑒𝑒2𝜂𝜂  will be discussed further in 

Section III. 

Next, we extended the idea of the parameters 𝐾𝐾  and 𝑒𝑒2𝜂𝜂  

from two-coupled to three-coupled harmonic oscillators 

system in the following subsection. 

 
2. Three-coupled harmonic oscillators 

 
By referring to the two-coupled harmonic oscillators in the 

previous section, we start decoupling the Hamiltonian for 

Equation (10) by performing the coordinate rotation to the 

potential energy portion for the axes of 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧. 

There are three angles of rotations 𝜑𝜑 , 𝜙𝜙  and 𝜃𝜃  which are 

associated with the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧-axis respectively. These angles 

explain the rotations in the three-dimensional (3-D) spaces 

as given below: 

 �
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� = �

1 0 0
0 cos𝜑𝜑 − sin𝜑𝜑
0 sin𝜑𝜑 cos𝜑𝜑

��
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�, (27) 

 �
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� = �

cos 𝜙𝜙 0 −sin 𝜙𝜙
0 1 0

sin 𝜙𝜙 0 cos 𝜙𝜙
��

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�, (28) 

 

and 

 �
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� = �

cos 𝜃𝜃 −sin 𝜃𝜃 0
sin 𝜃𝜃 cos 𝜃𝜃 0

0 0 1
��

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�. (29) 

Before decoupling the Hamiltonian, the polynomial 

𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥32 + 𝐷𝐷𝑥𝑥1𝑥𝑥2 + 𝐸𝐸𝑥𝑥1𝑥𝑥3 + 𝐹𝐹𝑥𝑥2𝑥𝑥3 , 

can be transformed into a (3 × 3) matrix as follows: 

 𝑉𝑉3 = (𝑥𝑥1 𝑥𝑥2 𝑥𝑥3)

⎝

⎜
⎛
𝐴𝐴 1

2
𝐷𝐷 1

2
𝐸𝐸

1
2
𝐷𝐷 𝐵𝐵 1

2
𝐹𝐹

1
2
𝐸𝐸 1

2
𝐹𝐹 𝐶𝐶 ⎠

⎟
⎞
�
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�, (30) 

where 𝑉𝑉3  is the potential matrix of a three-coupled system. 

After performing coordinate rotation to the square matrix on 

the 𝑥𝑥,𝑦𝑦 and 𝑧𝑧-axes, 𝑉𝑉3 will become 𝑉𝑉𝑡𝑡3 as below: 

 𝑉𝑉t3 = (𝑅𝑅𝑡𝑡𝑇𝑇)(𝑉𝑉3)(𝑅𝑅𝑡𝑡), (31) 

where 𝑅𝑅𝑡𝑡  is the rotation coordinate on 𝑥𝑥,𝑦𝑦 and 𝑧𝑧–axes and 𝑅𝑅𝑡𝑡𝑇𝑇  

is the transpose of 𝑅𝑅𝑡𝑡  with 𝑡𝑡 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧. Therefore, it is easy to 

see that: 

𝑅𝑅𝑥𝑥 = �
1 0 0
0 cos 𝜑𝜑 −sin 𝜑𝜑
0 sin 𝜑𝜑 cos 𝜑𝜑

� ,      𝑅𝑅𝑥𝑥𝑇𝑇 = �
1 0 0
0 cos 𝜑𝜑 sin 𝜑𝜑
0 −sin 𝜑𝜑 cos 𝜑𝜑

� ; 

𝑅𝑅𝑦𝑦 = �
cos 𝜙𝜙 0 −sin 𝜙𝜙

0 1 0
sin 𝜙𝜙 0 cos 𝜙𝜙

� ,       𝑅𝑅𝑦𝑦𝑇𝑇 = �
cos 𝜙𝜙 0 sin 𝜙𝜙

0 1 0
−sin 𝜙𝜙 0 cos 𝜙𝜙

� ; 

𝑅𝑅𝑧𝑧 = �
cos 𝜃𝜃 −sin 𝜃𝜃 0
sin 𝜃𝜃 cos 𝜃𝜃 0

0 0 1
� ,         𝑅𝑅𝑧𝑧𝑇𝑇 = �

cos 𝜃𝜃 sin 𝜃𝜃 0
−sin 𝜃𝜃 cos 𝜃𝜃 0

0 0 1
�. 

Through this coordinate rotation, the kinetic energy 

portion in Equation (10) remains invariant. So, we performed 

decoupling by diagonalising. By expansion and 

simplification, the new matrices on the  𝑥𝑥 , 𝑦𝑦  and 𝑧𝑧 -axis 

respectively are given as the following: 

 𝑉𝑉𝑥𝑥3 = �
𝐴𝐴 𝛶𝛶 𝜚𝜚
𝛶𝛶 𝜇𝜇 𝛺𝛺
𝜚𝜚 𝛺𝛺 𝜎𝜎

� , (32) 
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where 

𝜇𝜇 = 𝐵𝐵 cos2 𝜑𝜑 + 𝐶𝐶 sin2 𝜑𝜑 +
1
2𝐹𝐹 sin 2𝜑𝜑 ,

𝜎𝜎 = 𝐵𝐵  sin2 𝜑𝜑 + 𝐶𝐶  cos2 𝜑𝜑 −
1
2𝐹𝐹 sin 2𝜑𝜑,

Υ =
1
2 (𝐷𝐷 cos𝜑𝜑 + 𝐸𝐸 sin 𝜑𝜑),

𝜚𝜚 =
1
2

(𝐸𝐸 cos𝜑𝜑 − 𝐷𝐷 sin 𝜑𝜑),

Ω =
1
2

[(𝐶𝐶 − 𝐵𝐵) sin 2𝜑𝜑 + 𝐹𝐹 cos 2𝜑𝜑];

 

 𝑉𝑉𝑦𝑦3 = �
𝜋𝜋 𝜄𝜄 𝜗𝜗
𝜄𝜄 𝐵𝐵 𝜈𝜈
𝜗𝜗 𝜈𝜈 𝜌𝜌

�, (33) 

with 

𝜋𝜋 = 𝐴𝐴  cos2 𝜙𝜙 + 𝐶𝐶  sin2 𝜙𝜙 +
1
2𝐸𝐸 sin 2𝜙𝜙,

𝜌𝜌 = 𝐴𝐴  sin2 𝜙𝜙 + 𝐶𝐶  cos2 𝜙𝜙 −
1
2𝐸𝐸 sin 2𝜙𝜙,

𝜄𝜄 =
1
2 (𝐷𝐷 cos𝜙𝜙 + 𝐹𝐹 sin 𝜙𝜙),

𝜗𝜗 =
1
2

[(𝐶𝐶 − 𝐴𝐴) sin 2𝜙𝜙 + 𝐸𝐸 cos 2𝜙𝜙],

𝜈𝜈 =
1
2

(𝐹𝐹 cos𝜙𝜙 − 𝐷𝐷 sin𝜙𝜙);

 

and 

 𝑉𝑉𝑧𝑧3 = �
𝜛𝜛    𝜒𝜒    𝛽𝛽
𝜒𝜒    𝜅𝜅    𝜏𝜏
𝛽𝛽    𝜏𝜏    𝐶𝐶

�, (34) 

such that 

𝜛𝜛 = 𝐴𝐴  cos2 𝜃𝜃 + 𝐵𝐵 sin2 𝜃𝜃 +
1
2𝐷𝐷 sin 2𝜃𝜃,

𝜅𝜅 = 𝐴𝐴 sin2 𝜃𝜃 + 𝐵𝐵 cos2 𝜃𝜃 −
1
2𝐷𝐷 sin 2𝜃𝜃,

𝜒𝜒 =
1
2 [(𝐵𝐵 − 𝐴𝐴) sin 2𝜃𝜃 + 𝐷𝐷 cos 2𝜃𝜃],

𝛽𝛽 =
1
2 (𝐸𝐸 cos𝜃𝜃 + 𝐹𝐹 sin 𝜃𝜃),

𝜏𝜏 =
1
2 (𝐹𝐹 cos 𝜃𝜃 − 𝐸𝐸 sin 𝜃𝜃).

 

Now, by setting the off-diagonals (Ω , 𝜗𝜗  and 𝜒𝜒 ) of the 

Equations (32), (33) and (34) to zero, we found: 

 tan 2𝜑𝜑 = 𝐹𝐹
𝐵𝐵−𝐶𝐶

 , (35) 

 tan 2𝜙𝜙 = 𝐸𝐸
𝐴𝐴−𝐶𝐶

 , (36) 

 tan 2𝜃𝜃 = 𝐷𝐷
𝐴𝐴−𝐵𝐵

 . (37) 

These angles 𝜑𝜑 , 𝜙𝜙  and 𝜃𝜃  will produce different effects on 

the three-coupled harmonic oscillators system depending on 

their values. Later, in Section III, we will continue our 

discussion on the different values of the angles and their 

effects on the three-coupled system. 

Based on the rationale for the derivation of parameter 𝐾𝐾 in 

Equation (22) as a guide, the new parameter 𝐾𝐾 for the three 

coupled harmonic oscillators can be derived from the 

potential matrix in Equation (30): 

                𝐾𝐾 = �|𝑉𝑉3| 

𝐾𝐾 = �𝐴𝐴𝐵𝐵𝐶𝐶 + 1
4

(𝐷𝐷𝐸𝐸𝐹𝐹 − 𝐵𝐵𝐸𝐸2 − 𝐶𝐶𝐷𝐷2 − 𝐴𝐴𝐹𝐹2) , (38) 

where 

Det 𝑉𝑉3 

= 𝐴𝐴 �
𝐵𝐵

1
2𝐹𝐹

1
2
𝐹𝐹 𝐶𝐶

� −
1
2𝐷𝐷 �

1
2
𝐷𝐷

1
2𝐹𝐹

1
2
𝐸𝐸 𝐶𝐶

� +
1
2𝐸𝐸 �

1
2
𝐷𝐷 𝐵𝐵

1
2
𝐸𝐸

1
2𝐹𝐹

� 

= 𝐴𝐴 �𝐵𝐵𝐶𝐶 −
1
4𝐹𝐹

2� −
1
2𝐷𝐷 �

1
2𝐶𝐶𝐷𝐷 −

1
4𝐸𝐸𝐹𝐹� +

1
2𝐸𝐸 �

1
4𝐷𝐷𝐹𝐹 −

1
2𝐵𝐵𝐸𝐸� ; 

the (2 × 2) matrices are the cofactors, �𝐵𝐵𝐶𝐶 − 1
4
𝐹𝐹2�, �1

2
𝐶𝐶𝐷𝐷 −

1
4
𝐸𝐸𝐹𝐹� and �1

4
𝐷𝐷𝐹𝐹 − 1

2
𝐵𝐵𝐸𝐸� are the minors of 𝐴𝐴, 1

2
𝐷𝐷 and 1

2
𝐸𝐸 as in 

the first row of 𝑉𝑉3, respectively. 

With the rationale given previously for the derivation of 

parameters in Equation (22), the parameter 𝑒𝑒2𝜂𝜂   for the three-

coupled harmonic oscillators system may seem possible to be 

designed by finding the ratio of eigenvalues of the matrix 𝑉𝑉3 

to the parameter 𝐾𝐾 in Equation (38). However, as explained 

at the beginning of Section II, finding the eigenvalue 𝜆𝜆 for the 

three-coupled harmonic oscillators system is impossible due 

to its complexity. A further calculation involving parameter 

𝑒𝑒2𝜂𝜂   for the three-coupled harmonic oscillators system cannot 

be pursued. Therefore, other means of possible calculations 

were designed for the three-coupled system by some 

researchers. This will be explained systematically in Section 

III. 

In this section, we provided all the necessary reasons and 

proof regarding the calculations and parameters that lack 

details in the works of literature. Even though we have 

achieved our main aim, we wished to go the extra mile to 

investigate our work and compare it with the original 

reference literature in the next section. 

 
III. RESULTS AND DISCUSSION 

 
We did further studies on a few issues found in the literature. 

These issues are to be discussed next in a few subsections. In 

the beginning, we explored the possible values of α and their 

influences on two-coupled and three-coupled systems. Next, 

we analysed the various representations of the parameter 𝑒𝑒2𝜂𝜂   
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in the literature. Finally, we also showed the significance of 

the parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂   in the literature. 

 
A. Possible Values of 𝜶𝜶 and Their Influence on The 

Parameters 𝑲𝑲 and 𝒆𝒆𝟐𝟐𝟐𝟐 

 
The values for the angle of rotation 𝛼𝛼  may vary. The 

difference in the 𝛼𝛼 value will affect the parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂  

in two and three-coupled systems. 

 
1. Two-coupled system 

 
Let’s revisit Equations (3) and (18) to discuss the two-coupled 

system. According to Han et al. (1999), the angle 𝛼𝛼 may take 

various values. In Equation (18), if 𝛼𝛼 = 0°, then tan 2𝛼𝛼 = 0, 

therefore 𝐶𝐶 will be zero. According to Equation (3), the 𝐶𝐶 = 0 

shows that the oscillators now become decoupled. 

With the above information, we extended the concept with 

arbitrary values for 𝛼𝛼 . When 𝛼𝛼 = 90°  and 𝛼𝛼 = 180° , 

tan 2𝛼𝛼 = 0 , therefore 𝐶𝐶 = 0  as well. When 𝛼𝛼  takes these 

values, Equation (3) can be written as: 

𝐻𝐻32 = 1
2𝑀𝑀

(𝑝𝑝1′2 + 𝑝𝑝2′2) + 1
2

(𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22). (39) 

Thus, referring to Equation (22) the parameters become: 

     𝐾𝐾 = √𝐴𝐴𝐵𝐵 ,  𝑒𝑒2𝜂𝜂 = �𝐴𝐴
𝐵𝐵

 .  (40) 

However, referring to Equation (26), when 𝐶𝐶 = 0 and due 

to the “−” sign preceding �(𝐴𝐴 − 𝐵𝐵)2 + 𝐶𝐶2, the parameter 𝑒𝑒2𝜂𝜂  

will also take another value, which is �𝐵𝐵
𝐴𝐴

. 

There is an interesting Mathematical finding here. When 

the potential energy portion of Equation (39) is written in 

matrix form, the 𝑉𝑉2  of Equation (19) will become 𝑉𝑉(𝛼𝛼=0)
2  as 

defined below: 

𝑉𝑉(𝛼𝛼=0)
2 = �𝐴𝐴 0

0 𝐵𝐵�. 

The determinant of 𝑉𝑉(𝛼𝛼=0)
2  is 𝐴𝐴𝐵𝐵, which is the product of the 

main diagonal. Therefore, referring to Equation (23), the 

parameter 𝐾𝐾 will be as stated in Equation (40). Another piece 

of information that can be found in the main diagonal is that 

the elements A and B are the eigenvalues. That being the case, 

the parameter 𝑒𝑒2𝜂𝜂 = �𝐴𝐴
𝐵𝐵

= �𝐵𝐵
𝐴𝐴

 is stated by the formula in 

Equation (24). 

As stated by Han et al. (1999), when 𝛼𝛼 = 45°,  tan 2𝛼𝛼  is 

undefined. Hence, the system is made up of two identical 

oscillators coupled together by the coupling constant C. 

Referring to Equation (18), the angle 𝛼𝛼 = 45°  turns the 

denominator to zero, which means 𝐴𝐴 = 𝐵𝐵. We arrived at the 

same result when we chose 𝛼𝛼 = 135°. Due to this situation, 

Equation (3) will transform into: 

𝐻𝐻42 = 1
2𝑀𝑀

(𝑝𝑝1′2 + 𝑝𝑝2′2) + 1
2

(𝐴𝐴𝑥𝑥12 + 𝐴𝐴𝑥𝑥22 + 𝐶𝐶𝑥𝑥1𝑥𝑥2).    (41) 

So, now the parameters in Equation (22) become: 

𝐾𝐾 = �𝐴𝐴2 −
𝐶𝐶2

4 , 𝑒𝑒2𝜂𝜂 = �2𝐴𝐴 + 𝐶𝐶
2𝐴𝐴 − 𝐶𝐶 , 

Like in the earlier explanation, referring to Equation (26), 

when 𝐴𝐴 = 𝐵𝐵  and due to the “ − ” sign in front of 

�(𝐴𝐴 − 𝐵𝐵)2 + 𝐶𝐶2 , the parameter 𝑒𝑒2𝜂𝜂  can also take the value 

�2𝐴𝐴−𝐶𝐶
2𝐴𝐴+𝐶𝐶

. Thus, Han et al. (1999) mentioned that 𝜂𝜂 measures 

the strength of the coupling. Next, let’s take a look at how 

similar situations are being dealt with in the three-coupled 

system.  

2. Three-coupled system 

 
We tried to venture into the three-coupled system with 

various values of angles 𝜑𝜑 , 𝜙𝜙  and 𝜃𝜃 . Since there are three 

different angles of rotation, we can analyse each angle with 

different characteristics. Hence, we should revisit Equations 

(10) and (35), (36), (37). 

For a start, let’s assume that all three angles are equal, 

where 𝜑𝜑 = 𝜙𝜙 = 𝜃𝜃 . Thus, we can take any equal values for 

them. If 𝜑𝜑 = 𝜙𝜙 = 𝜃𝜃 = 0°, 90° or 180°, then tan 2𝜑𝜑 = tan 2𝜙𝜙 =

tan 2𝜃𝜃 = 0,  therefore 𝐷𝐷 = 𝐸𝐸 = 𝐹𝐹 = 0 . This defined that the 

oscillators become decoupled. Following this, the Equation 

(10) can be rephrased as: 

𝐻𝐻33 = 1
2𝑀𝑀

(𝑝𝑝1′2 + 𝑝𝑝2′2 + 𝑝𝑝3′2) + 1
2

(𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐶𝐶𝑥𝑥32).   (42) 

By using Equation (38), we can calculate the expression for 

the parameter 𝐾𝐾, which is: 

 𝐾𝐾 = √𝐴𝐴𝐵𝐵𝐶𝐶 . (43) 
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Parallel to the two-coupled system, the potential matrix for 

the Equation (42) can be written as 𝑉𝑉(𝜑𝜑,𝜙𝜙,𝜃𝜃=0)
3  as follow: 

𝑉𝑉(𝜑𝜑,𝜙𝜙,𝜃𝜃=0)
3 = �

𝐴𝐴 0 0
0 𝐵𝐵 0
0 0 𝐶𝐶

�. 

The determinant of 𝑉𝑉(𝜑𝜑,𝜙𝜙,𝜃𝜃=0)
3  is 𝐴𝐴𝐵𝐵𝐶𝐶, which is the product 

of the main diagonal. According to Equation (38), the 

parameter 𝐾𝐾 will be as shown in Equation (43). An important 

fact that we could notice in 𝑉𝑉(𝜑𝜑,𝜙𝜙,𝜃𝜃=0)
3  is that the elements 𝐴𝐴, 𝐵𝐵 

and 𝐶𝐶  are the eigenvalues. In this situation, the parameter 

𝑒𝑒2𝜂𝜂 = � 𝐴𝐴
𝐵𝐵𝐶𝐶

= � 𝐵𝐵
𝐴𝐴𝐶𝐶

= � 𝐶𝐶
𝐴𝐴𝐵𝐵

   by using the formula in Equation 

(24). On that account, the parameter 𝑒𝑒2𝜂𝜂  for the three-

coupled system can only be found for 𝜑𝜑 = 𝜙𝜙 = 𝜃𝜃 = 0°, 90° or 

180°. 

Next, let’s assume that two of the angles are equal. For 

example, let’s say that angles 𝜑𝜑  and 𝜙𝜙  are equal. We take 

either 0o, 90o or 180o since the three angles will give the same 

value for tan 2𝜑𝜑 and tan 2𝜙𝜙, which is zero. For the angle of 𝜃𝜃, 

we take either 45° or 135° as their tan 2𝜃𝜃 will be undefined. 

Referring to the Equations (35) and (36), the values of 0o, 90o 

or 180o  for the angles, 𝜑𝜑 and 𝜙𝜙  will make the numerators 𝐹𝐹 

and 𝐸𝐸 become zero. 

Where else, referring to Equation (37) the values 45°  or 

135°  for the angle 𝜃𝜃 will make the denominator, 𝐴𝐴 − 𝐵𝐵 zero 

and hence, 𝐴𝐴 = 𝐵𝐵. This defined that the first two oscillators 

are identical and coupled together by the 𝐷𝐷 term. The third 

oscillator, however, become decoupled from the first and the 

second oscillators. Following this, the Equation (10) can be 

rephrased as: 

𝐻𝐻43 = 1
2𝑀𝑀

(𝑝𝑝1′2 + 𝑝𝑝2′2 + 𝑝𝑝3′2) + 1
2

(𝐴𝐴𝑥𝑥12 + 𝐴𝐴𝑥𝑥22 + 𝐶𝐶𝑥𝑥32 + 𝐷𝐷𝑥𝑥1𝑥𝑥2). (44) 

By referring to Equations (38) and (44), we can calculate the 

expression for the parameter 𝐾𝐾 as follow: 

 𝐾𝐾 = �𝐴𝐴2𝐶𝐶 − 1
4
𝐶𝐶𝐷𝐷2 . (45) 

The opposite situation can be considered when 𝜑𝜑  and 𝜙𝜙 

take either 45°  or 135°   where tan 2𝜑𝜑  and tan 2𝜙𝜙  will be 

undefined. Now, by using the Equations (35) and (36), the 

denominators 𝐵𝐵 − 𝐶𝐶 = 𝐴𝐴 − 𝐶𝐶 = 0, thus 𝐴𝐴 = 𝐵𝐵 = 𝐶𝐶. Next, for 

angle 𝜃𝜃 we can assign the values 0o, 90o or 180o  which then 

results in tan 2𝜃𝜃  equal to zero. According to Equation (37), 

this causes D to be zero. This defined the system as consisting 

of three identical oscillators coupled together in two pairs The 

first and the third oscillators are coupled by the 𝐸𝐸 term while 

the second and the third oscillators are coupled by the 𝐹𝐹 

term. The first two oscillators become decoupled. This 

situation is contrary to Equation (44). As a result, the 

Equation (10) will transform into: 

𝐻𝐻53 =
1

2𝑀𝑀
(𝑝𝑝1′2 + 𝑝𝑝2′2 + 𝑝𝑝3′2) 

         + 1
2

(𝐴𝐴𝑥𝑥12 + 𝐴𝐴𝑥𝑥22 + 𝐴𝐴𝑥𝑥32 + 𝐸𝐸𝑥𝑥1𝑥𝑥3 + 𝐹𝐹𝑥𝑥2𝑥𝑥3). (46) 

Referring to Equations (38) and (46), we can calculate the 

expression for the parameter 𝐾𝐾 as follow, 

 𝐾𝐾 = �𝐴𝐴3 − 1
4
𝐴𝐴(𝐸𝐸2 + 𝐹𝐹2) . (47) 

A variety of similar situations can be designed by coupling 

the oscillators in different combinations which will produce 

different expressions for parameter 𝐾𝐾 . This discussion will 

become very laborious if various values of angles are to be 

considered. Therefore, we limit our analysis to the angles and 

the effects on the parameters by considering the previous 

explanation as sufficient examples. 

Finding 𝑒𝑒2𝜂𝜂  for the three-coupled harmonic oscillators is a 

challenging job, thus we discontinued the process in section 

II (B) (2). However, we found a paper that has similarity with 

our work on three-coupled systems where the derivation of 

parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂  shown by using the concept of limiting 

cases. This will be discussed next. 

 
B. Similar Work Found on Parameters 𝑲𝑲 and 𝒆𝒆𝟐𝟐𝟐𝟐 in 

Literature 
 
According to Merdaci and Jellal (2020), unlike a two-coupled 

system, it is not an easy task to analyse the entanglement in 

three or more particles due to the complicity of the problem. 

Thus, for a system of three-coupled harmonic oscillators, one 

has to consider three bipartitions (having a two-coupled 

system) and then look at the paring separately. This was done 

by using limiting cases. 

The researchers fixed the physical parameters and choose 

coordinate variables by doing bipartitions of the three-

coupled particles (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) to two-coupled particles such as 

(𝑥𝑥1, 𝑥𝑥2), (𝑥𝑥1, 𝑥𝑥3) and (𝑥𝑥2, 𝑥𝑥3). The solution of a two-coupled 

system with variables (𝑥𝑥1, 𝑥𝑥2)   was found by limiting the 
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coupling constants 𝐸𝐸  and 𝐹𝐹  in Equation (2) to 0 (𝐸𝐸,𝐹𝐹 → 0). 

This restricted the Hamiltonian in Equation (2) to: 

𝐻𝐻13 → 𝐻𝐻03 + 1
2
� 1
𝑚𝑚3
𝑝𝑝32 + 𝐶𝐶𝑥𝑥32�,  (48) 

where 𝐻𝐻03 is the Hamiltonian of the two-coupled (𝑥𝑥1, 𝑥𝑥2) 

𝐻𝐻03 = 1
2
� 1
𝑚𝑚1
𝑝𝑝12 + 1

𝑚𝑚2
𝑝𝑝22 + 𝐴𝐴𝑥𝑥12 + 𝐵𝐵𝑥𝑥22 + 𝐷𝐷𝑥𝑥1𝑥𝑥2�.  (49) 

By referring to Equations (35) and (36), taking 𝐸𝐸,𝐹𝐹 → 0 will 

make the angles 𝜙𝜙 → 0 and 𝜑𝜑 → 0. The potential matrix will 

be similar to the square matrix 𝑉𝑉2 in Equation (19). 

Therefore, the parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂  found by Merdaci and 

Jellal (2020) are similar to Equation (22). 

Similarly, the solution of a two-coupled system with 

variables (𝑥𝑥1, 𝑥𝑥3) and (𝑥𝑥2, 𝑥𝑥3) were found by limiting 𝐷𝐷,𝐹𝐹 → 0 

(𝜃𝜃 → 0  and 𝜑𝜑 → 0)  and 𝐷𝐷,𝐸𝐸 → 0  (𝜃𝜃 → 0  and 𝜙𝜙 → 0), 

respectively in Equation (2). Hence, the parameters 𝐾𝐾  and 

𝑒𝑒2𝜂𝜂  were explained in Appendix B of Merdaci and Jellal 

(2020). 

In the following part, we are going to take a quick look at 

the potential use of our results. 

 
C. Potential Use of Our Results 

 
Entanglement is a fundamental tool in solving many 

quantum mechanics problems such as quantum optics, 

quantum chemistry and also other fields of physics (de Souza 

Dutra, 2006). The entanglement makes it possible for the 

development in quantum information science to explain 

several quantum communications protocols such as quantum 

cryptography, quantum dense coding, quantum computing 

algorithms and quantum state teleportation (Makarov, 

2018a; Merdaci & Jellal, 2020; Park, 2018; Kao & Chou, 

2016). 

Entanglement’s strength is determined by the coupling 

forces between the particles (Merdaci & Jellal, 2020). Based 

on Equation (2), week coupling force is characterised by 

limiting the coupling constants (𝐷𝐷,𝐸𝐸,𝐹𝐹) → 0 , where the 

angles (𝜑𝜑,𝜙𝜙,𝜃𝜃) → 0  will cause the maximal value for the 

purity function, 𝑃𝑃 → 1 . This shows that the system is 

completely separable, hence there are no entangled states 

since the entropy 𝑆𝑆 = 1 − 𝑃𝑃 = 0. Otherwise, strong coupling 

causes the minimal value for the purity function, 𝑃𝑃 → 0 . 

Therefore, the system is maximally entangled due to 𝑆𝑆 = 1 −

0 = 1. 

Referring to Makarov (2018a) and Han et al. (1999), the 

parameters 𝐾𝐾  and 𝑒𝑒2𝜂𝜂  are further to be utilised in wave 

function and also in the process of finding the Schmidt mode 

Λ𝑘𝑘 . The Schmidt mode is one of the tools to measure the 

strength of entanglement. Thus, our results found in this 

study are important to the procedure of finding the wave 

function and the Schmidt mode. 

Next, we will explore the parameter 𝑒𝑒2𝜂𝜂   presented in the 

works of literature. 

 
D. Various Representations of The Parameter 𝒆𝒆𝟐𝟐𝟐𝟐 in 

Literature 
 
It is equally crucial to emphasise a few discoveries at this 

moment. Firstly, the parameter 𝑒𝑒2𝜂𝜂  was variously written in 

different papers. As for a beginning, the parameter was 

written as 𝑒𝑒2𝜂𝜂 (Makarov, 2018a). Next, 𝑒𝑒−2𝜂𝜂  were used (Han 

et. al., 1995; Han et al., 1993). We can also see the parameter 

were written differently, as 𝑒𝑒𝜂𝜂  by Han et al. (1999). Anyhow, 

the symbols used may be different, but they all refer to the 

same thing. Hence, we have adapted 𝑒𝑒2𝜂𝜂   in our discussion. 

Secondly, in the papers mentioned above, we also noticed 

that the “−” sign was omitted from the eigenvalues and only 

the “+” sign was used in the parameter 𝑒𝑒2𝜂𝜂   as stated in 

Equation (22). The literature might have chosen the “+” for 

simplicity purposes. 

Thirdly, Makarov (2018a) stated that the parameter 𝑒𝑒2𝜂𝜂  

was stated as: 

𝑒𝑒2𝜂𝜂 =
𝐴𝐴+𝐵𝐵+ 𝐴𝐴−𝐵𝐵

|𝐴𝐴−𝐵𝐵|�(𝐴𝐴−𝐵𝐵)2+𝐶𝐶2

�4𝐴𝐴𝐵𝐵−𝐶𝐶2
 .   (50) 

Here, the 𝐴𝐴−𝐵𝐵
|𝐴𝐴−𝐵𝐵|

  in Equation (50) seems to be the 

justification for the “ ± ” sign in Equation (26). Different 

combinations of 𝐴𝐴  and 𝐵𝐵  produce different expressions for 

the parameter 𝑒𝑒2𝜂𝜂   as follows: 

If 𝐴𝐴 > 𝐵𝐵, then 𝑒𝑒2𝜂𝜂 = 𝐴𝐴+𝐵𝐵+�(𝐴𝐴−𝐵𝐵)2+𝐶𝐶2

�4𝐴𝐴𝐵𝐵−𝐶𝐶2
; 

If 𝐴𝐴 < 𝐵𝐵, then 𝑒𝑒2𝜂𝜂 = 𝐴𝐴+𝐵𝐵−�(𝐴𝐴−𝐵𝐵)2+𝐶𝐶2

�4𝐴𝐴𝐵𝐵−𝐶𝐶2
; 
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If 𝐴𝐴 = 𝐵𝐵, then 𝑒𝑒2𝜂𝜂  is not defined, which relates to 𝛼𝛼 = 45° 

as in our discussion in the earlier subsection where it resulted 

in Equation (41). 

We have analysed two-coupled and three-coupled 

harmonic oscillators. To extend our work to the next level, we 

attempted to generalise our work for the 𝑁𝑁-coupled system. 

This will be discussed in the following section. 

 
E. 𝑵𝑵-coupled Harmonic Oscillators System 

 
We endeavoured in designing the Hamiltonian for 𝑁𝑁-coupled 

harmonic oscillators based on the Equations (1) and (2): 

𝐻𝐻1𝑁𝑁 = 1
2
�∑ 1

𝑚𝑚𝑘𝑘
𝑝𝑝𝑘𝑘2 + ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2𝑁𝑁

𝑖𝑖=1 + ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖,𝑖𝑖=1
(𝑖𝑖<𝑖𝑖)

𝑁𝑁
𝑘𝑘=1 � ; �𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖�,       (51) 

where 𝑚𝑚𝑘𝑘  and 𝑝𝑝𝑘𝑘  denote different masses and momentums 

respectively, coordinate variables 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖  and their coupling 

constants 𝐴𝐴𝑖𝑖𝑖𝑖  and 𝐴𝐴𝑖𝑖𝑖𝑖   with 𝑖𝑖  and 𝑗𝑗  being rows and columns 

[Note: for 𝐴𝐴𝑖𝑖𝑖𝑖  both 𝑖𝑖 ’s being rows and columns] of the 

potential square matrix. 𝐻𝐻𝑛𝑛𝑁𝑁  denotes the Hamiltonian for the 

𝑁𝑁-coupled harmonic oscillators system, where 𝑛𝑛 represents 

the sequence of the Hamiltonian.  

Later, the Hamiltonian will take the form similar to the two-

coupled and the three-coupled systems in Equations (3) and 

(10): 

𝐻𝐻2𝑁𝑁 = 1
2𝑀𝑀
∑ 𝑝𝑝′𝑘𝑘2 + 1

2
�∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2 + ∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖,𝑖𝑖=1
(𝑖𝑖<𝑖𝑖)

𝑁𝑁
𝑖𝑖=1 �𝑁𝑁

𝑘𝑘=1 .              (52) 

Hence the potential energy square matrix will take the form: 

𝑉𝑉𝑁𝑁 =  

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝐴𝐴11
1
2
𝐴𝐴12

1
2𝐴𝐴21 𝐴𝐴22

⋯

1
2
𝐴𝐴1(𝑁𝑁−1)

1
2
𝐴𝐴1𝑁𝑁

1
2𝐴𝐴2(𝑁𝑁−1)

1
2𝐴𝐴2𝑁𝑁

⋮ ⋱ ⋮
1
2𝐴𝐴(𝑁𝑁−1)1

1
2𝐴𝐴(𝑁𝑁−1)2

1
2𝐴𝐴𝑁𝑁1

1
2𝐴𝐴𝑁𝑁2

⋯
𝐴𝐴(𝑁𝑁−1)(𝑁𝑁−1)

1
2𝐴𝐴(𝑁𝑁−1)𝑁𝑁

1
2𝐴𝐴𝑁𝑁(𝑁𝑁−1) 𝐴𝐴𝑁𝑁𝑁𝑁 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

. 

Utilising this matrix potential, we attempted the derivation 

of the parameter 𝐾𝐾 by using the formula found in the earlier 

section: 

𝐾𝐾 = �|𝑉𝑉𝑁𝑁| . 

Here, the formula for 𝐾𝐾  will vary depending on the 

determinant that relies on the value of 𝑁𝑁. A general rule to 

measure the determinant for 𝑉𝑉𝑁𝑁  is similar to finding the 

determinant of 𝑉𝑉3 in Equation (38). Let’s take the first row of 

𝑉𝑉𝑁𝑁 to find the determinant as follows: 

|𝑉𝑉𝑁𝑁|

= (−1)(1+1) 𝐴𝐴11|𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜 𝐴𝐴11|

+ (−1)(1+2) 1
2𝐴𝐴12 �𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜 

1
2𝐴𝐴12� + ⋯

+ (−1)�1+(𝑁𝑁−1)� 1
2𝐴𝐴1(𝑁𝑁−1) �𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜

1
2𝐴𝐴1(𝑁𝑁−1)�

+ (−1)(1+𝑁𝑁) 1
2𝐴𝐴1𝑁𝑁 �𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜

1
2𝐴𝐴1𝑁𝑁� ; 

thus 

|𝑉𝑉𝑁𝑁|

= (−1)(1+1) 𝐴𝐴11 �
�
𝐴𝐴22

1
2
𝐴𝐴23 ⋯

1
2𝐴𝐴2𝑁𝑁

⋮ ⋱ ⋮
1
2𝐴𝐴𝑁𝑁2 

1
2𝐴𝐴𝑁𝑁3

⋯ 𝐴𝐴𝑁𝑁𝑁𝑁
�
�

+ (−1)(1+2) 1
2𝐴𝐴12 �

�

1
2
𝐴𝐴21

1
2
𝐴𝐴23 ⋯

1
2𝐴𝐴2𝑁𝑁

⋮ ⋱ ⋮
1
2𝐴𝐴𝑁𝑁1 

1
2𝐴𝐴𝑁𝑁3

⋯ 𝐴𝐴𝑁𝑁𝑁𝑁
�
� + ⋯

+ (−1)(1+(𝑁𝑁−1)) 1
2𝐴𝐴1(𝑁𝑁−1) �

�

1
2𝐴𝐴21 ⋯ 1

2𝐴𝐴2(𝑁𝑁−2)
1
2𝐴𝐴2𝑁𝑁

⋮ ⋱ ⋮
1
2𝐴𝐴𝑁𝑁1 ⋯ 1

2𝐴𝐴𝑁𝑁(𝑁𝑁−2) 𝐴𝐴𝑁𝑁𝑁𝑁
�
�

+ (−1)(1+𝑁𝑁) 1
2𝐴𝐴1𝑁𝑁 �

�

1
2𝐴𝐴21 𝐴𝐴22 ⋯

1
2𝐴𝐴2(𝑁𝑁−1)

⋮ ⋱ ⋮
1
2𝐴𝐴𝑁𝑁1 

1
2𝐴𝐴

⋯
1
2
𝐴𝐴𝑁𝑁(𝑁𝑁−1)

�
� . 

 

This process will be repeated to reduce the dimension of the 

cofactors to (2 × 2) as the minors are easy to find. Thus, the 

number of attempts to reduce the cofactors depends on the 

value of 𝑁𝑁.  

We have analysed in detail the parameters 𝐾𝐾  and 𝑒𝑒2𝜂𝜂   

involved in the literature. Questions may arise on the purpose 

and necessity of these parameters in the pre-Schmidt modes 

procedure. We will take a view on this in the next subsection. 

 
F. The Significance of The Parameters 𝑲𝑲 and 𝒆𝒆𝟐𝟐𝟐𝟐 in 

The Literature 

 
This section is just to review information in the pieces of 

literature and not for further discussion as the objective of 

this paper is only to derive the parameters. 

We came across the parameters 𝐾𝐾 and 𝑒𝑒2𝜂𝜂   in the literature 

in their process of deriving the Schmidt modes 𝛬𝛬𝑘𝑘 on how the 
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parameters were utilised accordingly (Han et al., 1999; 1995; 

1993). The Hamiltonian in Equation (3) was written similarly 

as follows: 

 𝐻𝐻52 = 1
2𝑀𝑀

(𝑝𝑝1′2 + 𝑝𝑝2′2) + 𝐾𝐾
2

(𝑒𝑒2𝜂𝜂𝑦𝑦12 + 𝑒𝑒−2𝜂𝜂𝑦𝑦22), (53) 

with 𝑦𝑦1 = 𝑥𝑥1 cos𝛼𝛼 − 𝑥𝑥2 sin𝛼𝛼  and 𝑦𝑦2 = 𝑥𝑥1 sin𝛼𝛼 − 𝑥𝑥2 cos𝛼𝛼 . It 

completed the diagonalisation process and the normal 

frequencies were given as follows: 

𝜔𝜔1 = 𝑒𝑒𝜂𝜂𝜔𝜔,                   𝜔𝜔2 = 𝑒𝑒−𝜂𝜂𝜔𝜔, 

with 𝜔𝜔 = �𝐾𝐾
𝑀𝑀

. Then, the author pursued his work from there. 

On the other hand, the parameters were introduced but 

their usage was discontinued for the reasons quoted as “not a 

simple parametrisation” and “not the most convenient for 

analysing results” especially 𝑒𝑒2𝜂𝜂  (Makarov, 2018a). Instead, 

the researcher used the properties of trigonometric functions 

to convert the Equation (53) to: 

 𝐻𝐻62 = 1
2𝑀𝑀

(𝑝𝑝1′2 + 𝑝𝑝2′2) + 1
2

(𝐴𝐴′𝑦𝑦12 + 𝐵𝐵′𝑦𝑦22); (54) 

𝐴𝐴′ = 𝐴𝐴 − 𝐶𝐶
2

tan𝛼𝛼, 𝐵𝐵′ = 𝐵𝐵 + 𝐶𝐶
2

tan𝛼𝛼,  and tan𝛼𝛼 = 𝜖𝜖
|𝜖𝜖|√𝜖𝜖

2 + 1 −

𝜖𝜖 , with 𝜖𝜖 = 𝐵𝐵−𝐴𝐴
𝐶𝐶

 ϵ. The paper then continues with its objective. 

 
IV. CONCLUSION 

 
Systems of two and three-coupled harmonic oscillators have 

been studied on a step-by-step basis. Our work was presented 

to fill up the gaps that are lacking in a few research papers. 

We have clarified the missing pieces for two main parameters 

𝐾𝐾 and 𝑒𝑒2𝜂𝜂   for the two-coupled harmonic oscillators system. 

By using the knowledge and guidance we gained from this 

two-coupled system, we developed our work into a three-

coupled harmonic oscillators system. Though our study 

accomplished by finding those parameters, we did not stop 

there, instead went a little further and discussed some issues 

found during our process of writing this paper. 

A Hamiltonian operator is a tool used in the research of 

quantum entanglement and various branches of sciences. It 

can be used for analysis and calculation without involving 

tedious numerical calculations, especially for large quantum 

numbers. The Schmidt decomposition is a convenient 

mathematical tool for measuring the nature of quantum 

entanglement (Ekert & Knight, 1995). One can use the value 

of the Schmidt modes 𝛬𝛬𝑘𝑘  to calculate the measure of the 

quantum entanglement of the system (Makarov, 2018b). 

However, we realised that quantum entanglement using the 

Schmidt modes cannot be obtained for multi-component 

systems i.e., more than a two-coupled system. Other methods 

of measurement need to be found. An example proposed by 

Makarov (2018a) is “negativity” referring to Vidal and 

Werner (2002), and Galve et al. (2010). 
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