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The anharmonic thermal expansion (TE) coefficient of crystalline iron (Fe) has been calculated and 

analysed in the temperature-dependent. The thermodynamic parameters of the crystal lattice are 

derived from the influence of the thermal vibrations of all atoms. The calculation model is 

developed from the correlated Einstein model and quantum-statistical perturbation theory using 

the anharmonic effective potential. The obtained expression of the temperature-dependent TE 

coefficient of Fe is an explicit form. The numerical results of Fe agree well with those obtained 

from the experiments at various temperatures in the range from 0 K to 900 K. The obtained results 

show that the present model is efficient in investigating the TE coefficient of Fe. 
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I. INTRODUCTION

Nowadays, accurate information about the temperature-

dependent thermal expansion (TE) coefficient of metals is 

necessary and important in engineering physics (Yokoyama, 

2019), especially for metallurgy and mechanics. It is because 

many dynamic properties of metals can be defined from 

their anharmonic TE coefficient (Fornasini et al., 2017). 

Moreover, this coefficient determines the compatibility of 

the component metals and the deformation of the alloys 

under the influence of temperature change (Stern et al., 

1980). Like the compressibility and heat capacity, the 

anharmonic TE coefficient of metals can be measured 

experimentally with high precision and is one of the 

independent thermodynamic properties (Vila et al., 2018). 

However, the influence of thermal vibrations changes the 

interatomic distance of atoms and their positions (Lee et al., 

1981). This influence causes anharmonic effects and thermal 

disorders in the crystal lattice, so the increasing temperature 

is sensitive to the anharmonic TE coefficient (Eisenberger & 

Brown, 1979), as seen in Figure 1.  

Figure 1. Thermal expansion of metal with a change in 

temperature. 

In recent years, crystalline iron (Fe) having a body-centred 

cubic (BCC) structure accounts for over 90% of worldwide 

metal production (Emsley, 2011). Iron is the most widely 

used of all the metals because it is often used to create steel in 

civil engineering and manufacturing, such as bridges and 

aircraft, structural elements for buildings, hulls of ships and 

vehicles, and other machine tools (Smith & Hashemi, 2006; 

Tien, 2023). The experimental TE coefficient of Fe was 

measured by Dunn (2016), Landsberg (2018), and Hwang 
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(1972). However, there is still no effective theoretical model 

to calculate and analyse the anharmonic TE coefficient of Fe. 

Meanwhile, a quantum anharmonic correlated Einstein 

(QACE) model has been used to effectively treat the 

anharmonic TE coefficient of metals (Hung et al., 2017a; 

2017b). This model has the advantage of investigating the 

anharmonic TE coefficient of crystals because the obtained 

expressions are explicit and are valid even in the low 

temperature (LT) region (Tien, 2020a; 2022). Therefore, 

calculating and analysing the anharmonic TE coefficient of 

Fe based on the QACE model will be a necessary addition to 

thermodynamic property investigations of Fe. 

 
II. FORMALISM AND METHOD 

 
A. Formalism 

 
Normally, the TE coefficient characterises the net thermal 

expansion and can be determined by (Hung et al., 2017b; Ho 

& Taylor, 1998; Tien, 2023): 

𝛼𝛼𝑇𝑇(𝑇𝑇) = 𝑑𝑑ℓ
ℓ𝑑𝑑𝑇𝑇

= 𝑑𝑑⟨𝑟𝑟⟩
⟨𝑟𝑟⟩𝑑𝑑𝑇𝑇

= 𝑑𝑑⟨𝑟𝑟⟩
𝑟𝑟0𝑑𝑑𝑇𝑇

      ,                (1) 

where T  is the absolute temperature,   is a particular 

length measurement,  denotes the thermal average that 

can be calculated via true radial pair distribution (RPD) 

function using the statistical density matrix, and 0r and r  

are the equilibrium and instantaneous atomic distances, 

respectively.  

Usually, r  describes the variance of real RPD function 

and can be presented in terms of the powerful moment of 

real RPD function (Tröger et al., 1994), so the TE coefficient 

is rewritten as:  

                        ( ) ( ) ( )σα
+

= = =
1

0

0 0 0
T

d r x d x dT
r dT r dT r dT

,                (2) 

where ( )σ =1 x is the first cumulant in the cumulant 

expansion approach of the extended X-ray absorption fine 

structure (EXAFS) theory. 

The general expression of the temperature-dependent 

EXAFS cumulant in the QACE model was calculated by Tien  

(2020). Still, the anharmonic TE coefficient of Fe has not yet 

been investigated in the temperature-dependent. Therefore, 

we extend this model to determine the temperature-

dependent TE coefficient of Fe.  

One usually considers an anharmonic effective (AE) 

potential (Hung & Rehr, 1997) to determine the 

thermodynamic parameters of crystals. If ignoring the 

constant contribution and extending to the third order 

(Yokoyama et al., 1996), this potential is written in the form: 

                       = − = −2 3
0

1
( ) ,

2eff eff anV x k x k x x r r ,                   (3) 

where x is the displacement, effk  is the effective force 

constant, and ank is the anharmonicity force constant. 

 

 

Figure 2. The BCC structural model of Fe. 

 
The BCC structural model of Fe is illustrated in Figure 2. 

In the structure of Fe, it has similar atoms at one centre and 

eight corners of a cube, so each atom has a mass of m  and 

each unit cell contains two atoms (Simon, 2013). 

 
B. Method 

 
The AE potential of Fe can be calculated via the Morse 

potential that describes the pair interaction potential of 

atoms (Girifalco & Weizer, 1959). Use of this structural 

characteristic, the AE potential of Fe is defined as follows 

(Tien, 2022):     

                            α α= −2 2 3 311 3
( )

6 4effV x D x D x ,                      (4) 

where α  is the width of Morse potential and D is the 

dissociation of Morse potential. 

Comparing Eq. (3) with Eq. (4), the local force constants 

effk and ank  are deduced as follows: 

                             α α= =2 311 3
,

3 4eff ank D k D ,                       (5) 

The QACE model (Tien, 2020a) was developed from the 

correlated Einstein model (Sevillano et al., 1979) based on 

the first-order perturbation theory (Yokoyama et al., 1996) 

and AE potential (Hung & Rehr, 1997). In the crystal lattice, 
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the atomic thermal vibrations of Fe are characterised by the 

correlated Einstein frequency ωE  and temperature θE  

(Tien, 2022).  

Substituting the obtained local force constants effk  in Eq. 

(5) into the general expression of  these parameters (Tien, 

2022), the correlated Einstein frequency and temperature  

of Fe are obtained as follows:  

              
ω αω α θ

µ
= = = =

 22 22
,

3 3
eff E

E E
B B

k D D
m k k m

,          (6) 

where   is the reduced Planck constant and Bk  is the 

Boltzmann constant. 

Substituting the obtained local force constants effk  and 

ank  in Eq. (5) into the general moment expression x  

(Tien, 2020a), the temperature-dependent EXAFS cumulant 

of Fe is obtained in the form as: 

( )
ω ω

ω ω

ω ωσ
α

   + +
= = =   

− −   

 

 

 1
2

3 811 1
2 1 968 1

E B E B

E B E B

eff

k T k T
E an E

k T k T

k e ex
k e D e

,   (7) 

Substituting the obtained temperature-dependent EXAFS 

cumulant into Eq. (2) to calculate the temperature-

dependent TE coefficient of Fe, we obtain the following 

results: 

                  ( )
( )

ω

ω

ωα
α

= ⋅
−





2 2

22
0

81
484 1

E B

E B

k T
E

T k T
B

eT
D r k T e

,               (8)          

Using the approximation { }ω ≈ +∞exp E Bk T , we 

calculate the anharmonic TE coefficient of Fe in the LT limit 

( )→0T  from Eq. (8). The obtained result is: 

                       ( ) ω

ωα
α

= ⋅


2 2

2
0

81 1
484 E B

E
T k T

B

T
D r k T e

,                    (9) 

Using the approximation { }ω ω≈ + exp 1E B E Bk T k T , we 

calculate the anharmonic TE coefficient of Fe in the high 

temperature (HT) limit ( )T → +∞ from Eq. (8). The 

obtained result is: 

                                  ( )α
α

=
0

81
484

B
T

k
T

D r
,                               (10) 

A nomenclature of physical symbols is given in Table 1, 

which reports symbols and their units of measurement 

together used in these equations. This nomenclature is given 

for the convenience of following the above equations and 

calculating the numbers below. 

Table 1. The nomenclature of physical symbols. 

Physical 

symbol 
Physical meaning Unit 

αT  TE  coefficient K-1 

r  Instantaneous atomic distance Å 

0r  Equilibrium atomic distance Å 

  Length Å 

T Temperature K 

x  Displacement Å 

m  Atomic mass eV.s2.Å-2 

effk  Effective force constant eVÅ-2 

ank  Anharmonicity force constant eVÅ-3 

effV  anharmonic effective potential eV 

α  Width of Morse potential Å-1 

D Dissociation of Morse potential eV 

ωE  Correlated Einstein frequency Hz 

θE  Correlated Einstein temperature K 

  Reduced Planck constant eV.s 

Bk  Boltzmann constant eV. Å 

( )σ 1  First EXAFS cumulant Å 

 
Thus, the QACE model has been extended to calculate the 

anharmonic TE coefficient of Fe efficiently. The obtained 

expression using this model can satisfy all their 

temperature-dependent fundamental properties. 

 
III. RESULT AND DISCUSSION 

 
In numerical calculations of Fe, we use the atomic 
mass −= × 275.788 10m eV.s2.Å-2 (Ashcroft & Mermin, 1976) 

and Morse potential parameters =0 2.845r  Å, α = 1.3885  Å-1, 

=0.4174D eV (Girifalco & Weizer, 1959) to calculate the 

correlated Einstein temperature and frequency, the local 

force constants, the position-dependent AE potential, the 

temperature-dependent first and TE coefficient. Our 

obtained results are compared with those obtained using the 

classical anharmonic correlated Einstein (CACE) model 

(Tien, 2020b) and experiments (Dunn, 2016; Landsberg, 

2018; Hwang, 1972). From these obtained comparisons, we 

analyse and discuss the efficacy of the QACE model in 

investigating the anharmonic TE coefficient of Fe. 
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Using Eqs. (5) and (6) in the QACE model, we have 

calculated the local force constants = 2.9506effk eVÅ-2 and 

= −0.8380ank eVÅ-3, the correlated Einstein frequency 

ω = × 133.1836 10E Hz, and the correlated Einstein temperature 

θ = 243.1829E K. Meanwhile, the measured values by Pirog 

& Nedoseikina (2003) at Synchrotron Radiation Siberian 

Center (SRSC), Russia obtain the local force constants 

= ±4.0 0.5effk eVÅ-2  and = − ±1.7 0.7ank eVÅ-3, the 

correlated Einstein frequency ω = ± × 133.32 0.29 10E Hz, and 

the correlated Einstein temperature θ ±=253.5 21.9E K. It can 

be seen that our results are suitable with the experimental 

values (Pirog & Nedoseikina, 2003), especially for the 

correlated Einstein temperature and frequency. 

 

Figure 3. The position-dependent AE potential of Fe 

obtained using the experiment (Pirog & Nedoseikina, 2003) 

and the QACE model. 

 

The position dependence of the AE potential of Fe in the 

position range from −0.17 Å to 0.17 Å is represented in 

Figure 3. Herein, our obtained result using the QACE is 

calculated by Eq. (4), and the experimental values are 

obtained using the Eq. (3) and the measured local force 

constants. The obtained results show that the graph 

representing the AE potential is asymmetric, in which the 

values at the positive positions are smaller than those at the 

negative positions of the same magnitude. 

 

Table 2. The AE potential of Fe is obtained using the QACE 

model and experimental data. 

Quantity Value 

x (Å) - 0.17 - 0.13 - 0.09 -0.05 0 0.05 0.09 0.13 0.17 

effV (eV)a 0.09 0.05 0.02 0.01 0 0.01 0.02 0.05 0.08 

effV (eV)b 0.12 0.07 0.03 0.01 0 0.01 0.03 0.06 0.11 

aOur values are obtained using the QACE model.              
bThe average values are obtained from the experimental data 

determined by Pirog & Nedoseikina (2003).   

           
The obtained values of the AE potential are given in Table 

1. It can be seen that our results agree well with the obtained 

values from experimental data (Pirog & Nedoseikina, 2003), 

especially at positions around the equilibrium position 

( )=0x . 

 

Figure 4. The temperature-dependent first EXAFS 

cumulant of Fe obtained using the experiment (Pirog & 

Nedoseikina, 2003) and the CACE  (Tien, 2020b) and QACE 

models. 

 
The temperature dependence of the first EXAFS cumulant 

σ (1)( )T  of Fe in a range from 0 to 900 K is represented in 

Fig. 4. Herein, our obtained result using the QACE model is 

calculated by Eq. (7), and the obtained result using the 

CACE model is calculated from the obtained expression by 

Hung et al. (2017b). Meanwhile, the experimental values at 

293 K, 313 K, 333 K, 353 K, 373 K, and 393 K are measured 

by Pirog & Nedoseikina (2003) at the SRSC. It can be seen 

that our result agrees well with those obtained using the 

CACE model (only in the HT region) (Tien, 2020b) and 

experiment (Pirog & Nedoseikina, 2003). For example, the 

obtained results using the QACE model, CACE model (Tien, 
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2020b), and experiment (Pirog & Nedoseikina, 2003) at 

= 293T K are ( )σ −= ×1 37.8 10 Å, ( )σ −= ×1 37.2 10 Å, and 

( )σ −= ×1 38.0 10  Å, respectively. Moreover, the CACE model 

(Tien, 2020b) cannot calculate quantum effects using 

classical statistical theory because this model cannot work 

well in the LT region, so it can be seen that the obtained 

result using the CACE model (Tien, 2020b) approaches zero 

as the temperature approaches zero.  

 

Figure 5. The temperature-dependent TE coefficient of Fe 

obtained using the CACE (Tien, 2020b) and QACE models 

and the experiment 1 (Hwang, 1972), experiment 2 (Dunn, 

2016), and experiment 3 (Landsberg, 2018). 

 
The temperature dependence of the TE coefficient of Fe in 

a range from 0 to 900 K is represented in Figure 5. Our 

obtained result using the QACE model is calculated by Eq. 

(8), and the obtained result using the CACE model is 

calculated by Eq. (2) with the obtained first EXAFS 

cumulant by Hung et al. (2017b). Meanwhile, the 

experimental values are determined by Hwang (1972), Dunn 

(2016), and Landsberg (2018). Moreover, our result increase 

with increasing temperature T and approaches those 

obtained using the CACE model (Tien, 2020b) in the HT 

limit, which fits perfectly with Eq. (10) and shows that the 

anharmonic effects can be efficiently described by this QACE 

model. Meanwhile, the obtained result using the CACE 

model (Tien, 2020b) is constant because the temperature-

dependent first EXAFS cumulant is a linear function in this 

model, as seen in Figure 4. 

 

Table 3. The TE coefficient of Fe is obtained using the QACE 

model and experimental data. 

 Quantity Value 

 T (K) 73 273 293 373 473 573 673 773 873 

αT ( )− −× 5 110 K a   0.19 1.26 1.29 1.37 1.43 1.46 1.48 1.50 1.51 

αT ( )− −× 5 110 K b    1.38 1.43 1.50 1.57 1.59 1.55 

αT ( )− −× 5 110 K c   1.21       

αT ( )− −× 5 110 K d   0.30 1.20       1.60 

aOur values are obtained using the QACE model.      
bThe values are obtained from the experimental data determined 
by Hwang (1972).        
cThe values are obtained from the experimental data determined 
by Dunn (2016). 
dThe values are obtained from the experimental data determined 
by Landsberg (2018). 
 

The obtained values of the TE coefficient are given in Table 

3. It can be seen that our result agrees with those obtained 

from the experimental data, while the obtained value using 

the CACE model 𝛼𝛼 ≃ 1.53 × 10−5K-1 is not satisfied with the 

experimental values in the LT region because the quantum 

effects are not taken into account in the CACE model. 

Thus, the obtained results of the anharmonic TE coefficient 

using the QACE model agree with those obtained using the 

experiments and the CACE model in the HT region. 

 
IV. CONCLUSION 

 
In this investigation, we have performed an efficient model 

to analyse and calculate the anharmonic TE coefficient of Fe. 

The calculated temperature-dependent TE coefficient using 

the QACE model can satisfy all of its fundamental 

properties. The increase of the TE coefficient with increasing 

temperature T shows that the crystal lattice expands more 

strongly at higher temperatures. This result can also 

describe the influence of anharmonic effects in the HT 

region and the influence of quantum effects in the LT region 

on the anharmonic TE coefficient. 

The good agreement of our results with those obtained 

using the experiments and the CACE model at various 

temperatures shows the efficacy of the QACE model in 

investigating the anharmonic TE coefficient of Fe. The 

present model can be used to calculate and analyse the 

anharmonic TE coefficient of other metals in both the LT 

and HT regions. 
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