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Many network models have been proposed to mimic real-world systems when they become too large 

and complex to be described explicitly. Since the models inherit similar structural properties to the 

real-world network, by studying their nodes and links, many network properties can be identified. 

While most of the tools used to study their structural properties are coming from graph theory, spectral 

analysis is another method that can be used to reveal the structural inheritance properties of a network. 

In this work, we performed spectral analysis on network models, namely Erdo-Renyi (ER), Watts-

Strogatz (WS), Barabasi Albert (BA), grids and growing geometrical network (GGN) with the 

undirected and directed connection. The eigenvalue spectrum of the normalised Laplacian was 

computed for each model and used in spectral plots, Cheeger constant and energy measurement. 

Results from the spectral measures have revealed specific characteristics for different models, which 

in turn make them easier to be recognised.   
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I. INTRODUCTION 
 
A network is a simplified representation of a complex system 

where the entities of the system are represented by the nodes 

and their relationships are represented by the edges that 

connect them. In recent years, the study of complex networks 

has been on the rise as more and more complex systems 

ranging from technical to biological have been successfully 

constructed, modelled, and analysed. Some of the well-

known examples are the World Wide Web (Liang et al.,2019), 

the Internet (Pantazopoulos, 2015), protein-protein 

interaction (Andreopoulos et al., 2003), the online social 

network (Mislove, 2009) and the network of medicine by 

Barabasi (Barabasi & Albert, 1999).  

Network theory which is a part of graph theory played a vital 

role in developing measurement (i.e. parameter) to analyse 

the inheritance structural properties of the network such as 

degree distribution (Newman, 2010), average path length 

(Pattanayak et al., 2020), diameter, centrality analysis and 

clustering coefficient (Li et al., 2017). Research in network 

science which focused on understanding the topological 

structure of the underlying networks (Ernesto et al., 2009)  

has led to the basic understanding of emergent phenomena in 

various complex systems and processes such as disease 

spreading, scientific collaboration, communities detection 

and cellular signalling (Sarkar & Jalan, 2018). Since complex 

networks usually involve thousands of nodes, many network 

models have been proposed and constructed to mimic the 

underlying features of complex networks for instance Erdo-

Renyi (ER) (Erdos & Renyi, 1959), Watts-Strogatz (WS) 

(Watts & Strogatz, 1998), Barabasi Albert (BA) (Barabasi & 

Albert, 1999) and growing geometrical network (GGN) model 

(Taha et al., 2016). 

In recent years, researchers have started to analyse the 

inheritance properties using spectral graph theory or just 

spectral studies (Polya & Szego, 1951.) This method has been 

used as a tool to establish the relationship between various 

properties of a graph and the characteristic polynomial, 

eigenvalues, and eigenvectors of connectivity matrices 
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associated with the graph (Li & Zhang, 2015). The spectrum 

of the associated eigenvalues of the networks contains 

valuable information about the structural characteristics of 

underlying networks and also provides insight into the 

dynamical behaviour and stability of corresponding complex 

systems (Chung, 1997). Since different networks will have 

different sets of spectra, this convenience can be utilised as a 

practical tool for classifying and understanding different real-

world systems represented as networks (Sarkar & Jalan, 

2018). 

Traditionally, the study of networks focused on regular 

graphs. As systems now have become more complex or 

involve thousands to millions of nodes as in most of real-

world networks, many models have been proposed by 

researchers to mimic them. One of the earliest network 

models was the random network model introduced by the 

Erdos-Renyi in 1959. This network model generates a 

network with a certain probability (Erdos & Renyi, 1959). 

This model has been the cornerstone for many scientific 

discoveries and notable results (Castro & Grossman,  1999). 

The next BA scale-free network has growth preference 

attachment and the BA network model is invented by Albert-

Laszlo Barabasi and Reka Albert in 1999 (Barabasi & Albert, 

1999). WS small work network has a low average path length 

and high clustering coefficient (Watts & Strogatz, 1998). Then 

the grid network models, i.e. square grid and triangular grid 

were introduced by Eric Weisstein (2001). Square grid is a 

two-dimensional grid graph whereas triangular grid is 

defined as an induced subgraph of a tiling plane with 

equilateral triangles. Lastly, the growing geometrical network 

model is the study of the evolving network. GGN network is 

built with a certain shape; when the number of the iteration 

increases, the number of nodes increases based on the 

repeating structure and shape (Wu et al., 2014). 

In this paper, we investigate the spectrum of normalised 

Laplacian for the network with undirected or directed 

connections for six different models namely, ER random 

network, BA scale-free, WS small world, square regular (Sgrid) 

network, triangular grid lattice (Tgrid) network and GGN 

models. This work aims to analyse and compare the spectral 

properties of the network models computed from spectral 

plots, Cheeger constant and energy measurement to reveal 

their specific characteristics which in turn make them 

easier to be recognised. All the computation and network 

model construction are performed using Mathematica 

software. It is important to differentiate the models and their 

characteristics in real applications because real-world 

networks are too large to describe explicitly and direct 

visualisation is only applicable when the network is sparse or 

only involves a small number of nodes. It will be too 

complicated for the eye to comprehend if the network goes up 

to a few thousand nodes. 

These models will attempt to mimic the real-world network 

construction processes to reproduce similar inheritance 

structural properties. Various parameters, such as degree 

distribution, average path length, diameter, betweenness 

centrality, transitivity or clustering coefficient (Newman, 

2004), are measured from the networks to perform further 

studies. In addition, Banerjee (2008) has constructed many 

networks to analyse the structural inheritance properties of a 

network. Via these kinds of characterisation, it is found that 

networks that share common properties are usually similar in 

their topological structure. 

 
II. FUNDAMENTAL AND METHODOLOGY 
 

B. Connectivity Matrices 
 

A connectivity matrix (or adjacency matrix (A(G))) is a matrix 

that shows how the nodes in a network are connected. The 

two commonly used connectivity matrices associated with the 

network are the Laplacian matrix (L(G)) and the normalised 

Laplacian matrix (NL(G)).  

The equation for the A(G) is given as: 

𝐴𝐴𝑖𝑖𝑖𝑖

= � 1     𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗,
         0    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.                                                                 

 

(1) 

As for the L(G), the equation is given as 

𝐿𝐿𝑖𝑖𝑖𝑖  

= � 
𝑑𝑑(𝑖𝑖)        𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗,                                                                        
−1         𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗,
     0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.                                                                 

 

(2) 

where d(i) is the degree of node i.  
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The equation for the NL(G) (Butler, 2016) is 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 

=

⎩
⎪
⎨

⎪
⎧−

1
�𝑑𝑑(𝑖𝑖)𝑑𝑑(𝑗𝑗)

𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ~ 𝑗𝑗,

𝑑𝑑(𝑖𝑖) − 1
𝑑𝑑(𝑖𝑖)         𝑖𝑖𝑖𝑖 𝑖𝑖 = 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑(𝑖𝑖) ≠ 0,

 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

 

(4) 

 

 

(3) 

where d(j) is the degree of the node j. 

The L(G) and NL(G) are related to the A(G) via Equations 4 

and 5 respectively: 

𝐿𝐿 = 𝐷𝐷 − 𝐴𝐴, (4) 

𝑁𝑁𝑁𝑁 = 𝐼𝐼 − 𝐷𝐷−1 2� 𝐴𝐴𝐷𝐷−1 2�  (5) 

where D is the diagonal matrix, I is the identity matrix and A 

is the adjacency matrix. 

 
B. Normalised Laplacian Spectral Density Plot 

(NLSDP) 
 
In order to study the properties of the network models, the 

normalised Laplacian spectrum is utilised to plot the spectral 

density plot. The spectral density of a network is the density 

of the eigenvalues of 𝑁𝑁𝑁𝑁(𝐺𝐺). For a finite system, this can be 

written as the sum of delta function given as (Chung, 1997) 

𝑝𝑝(𝜆𝜆) ≡
1
𝑛𝑛�𝛿𝛿�𝜆𝜆 − 𝜆𝜆𝑗𝑗�,

𝑛𝑛

𝑗𝑗=1

 
 

(6) 

where n is the number of nodes, 𝛿𝛿�𝜆𝜆 − 𝜆𝜆𝑗𝑗� is the Kroneker 

delta function for the spectrum of the network model. 

 
C. Cheeger Constant 

 
Cheeger constant (ℎ𝐺𝐺) of a graph is a numerical measure of 

whether or not a graph has a bottleneck (a point where the 

system is limited by connection). ℎ𝐺𝐺 is measured to identify 

the bottleneck of the network. Cheeger constant of a subset 𝑆𝑆 

is defined as 

ℎ𝐺𝐺(𝑆𝑆) =
�𝐸𝐸(𝑆𝑆, 𝑆𝑆)�

min (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣𝑆𝑆̅)
 

(7) 

where �𝐸𝐸(𝑆𝑆, 𝑆𝑆)�  denotes the set of edges linking to 

subset 𝑆𝑆 and 𝑆𝑆.  

ℎ𝐺𝐺  of a graph, 𝐺𝐺 is defined as 

 ℎ𝐺𝐺 = min
𝐺𝐺

(ℎ𝐺𝐺(𝑆𝑆)) (8) 

which means we need to choose the smallest possible ℎ𝐺𝐺  

value. ℎ𝐺𝐺  also satisfied the Cheeger inequality, which is the 

relationship between the ℎ𝐺𝐺  and the second smallest 

eigenvalue (𝜆𝜆2),  which Cheeger inequality is given as 

 1
2ℎ𝐺𝐺

2 ≤ 𝜆𝜆2 ≤ 2ℎ𝐺𝐺  
(9) 

 
D. Energy 

 
Energy is the sum of the absolute eigenvalues of a network. 

The adjacency energy (𝐸𝐸𝐴𝐴(𝐺𝐺)) is defined as 

 
𝐸𝐸𝐴𝐴(𝐺𝐺) = �|𝜆𝜆𝑖𝑖(𝐴𝐴)|

𝑛𝑛

𝑖𝑖=1

 
(10) 

where 𝑛𝑛 represents the order of the network and 𝜆𝜆𝑖𝑖(𝐴𝐴) is the 

eigenvalues for 𝐴𝐴(𝐺𝐺).   

As for the energy of the directed network (or digraph, 𝐺̅𝐺), 

𝜆𝜆𝑖𝑖(𝐴𝐴)   is replaced with Re 𝜆𝜆𝑖𝑖  which is the real part of 

eigenvalues 𝜆𝜆𝑖𝑖 (Rada, 2009). When we considered 𝑁𝑁𝑁𝑁(𝐺𝐺), the 

normalised Laplacian energy (𝐸𝐸𝑁𝑁𝑁𝑁(𝐺𝐺)) is given as, 

𝐸𝐸𝑁𝑁𝑁𝑁(𝐺𝐺) = �|𝜆𝜆𝑖𝑖(𝑁𝑁𝑁𝑁) − 1|
𝑛𝑛

𝑖𝑖=1

 
(11) 

where 𝜆𝜆𝑖𝑖(𝑁𝑁𝑁𝑁) is the eigenvalues for 𝑁𝑁𝑁𝑁(𝐺𝐺).  

For an 𝑁𝑁-nodes complete network, if we are using A(G) the 

analytical energy is given by 𝐸𝐸(𝐾𝐾𝑛𝑛)  =  2(𝑛𝑛 − 1) 

(Balakrishnan, 2004) where 𝐾𝐾𝑛𝑛 refer to the complete network 

while if we are using NL(G), the energy is two (Cavers et al., 

2010). The ratio RAM, between the EA(G) of the network 

model and the complete network is then computed to 

describe the network’s structure.  If the ratio is one, this 

means that the network model is a complete network. If the 

value is small, it means that nodes are sparsely connected.  

For 𝐸𝐸𝑁𝑁𝑁𝑁(𝐺𝐺), we take the ratio 𝑅𝑅𝑁𝑁𝑁𝑁 between the energy of the 

network model with the upper bound of the energy spectrum 

(Cavers et al., 2010) which is defined as 

 2 ≤ 𝐸𝐸𝑁𝑁𝑁𝑁(𝐺𝐺) ≤ 2 �
𝑛𝑛
2� 

(12) 

 1 ≤ 𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) ≤ �
𝑛𝑛
2� 

(13) 

where �𝑛𝑛
2
� is the floor function that rounds down and returns 

the largest integer less than or equal to a given number. 

   
E. Construction of Network Based on Different 

Network Models 
 
In network study, network models are developed to mimic 

real-world systems. They are important because the pattern 

and properties determined from them using spectral analysis 
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can be used to characterise complex real-world networks. 

Different network models are generated using different 

algorithms. In this section, we explain how all the network 

models are generated using Mathematica software.  

ER random graph model is represented as 𝐺𝐺(𝑛𝑛, 𝑝𝑝) (Erdos & 

Renyi, 1959) where n is the number of nodes and 𝑝𝑝  is the 

probability. According to Erdos and Renyi  (1959), the 

algorithm for constructing this network model is as follows: 

i. First, input 𝑛𝑛 and 𝑝𝑝 for the network. Based on these 

values, the number of edges 𝑚𝑚 = 𝑝𝑝 𝑛𝑛(𝑛𝑛−1)
2

 is computed. 

ii. A pair of randomly selected nodes is chosen and an 

edge is added with probability 𝑝𝑝. 

iii. Step ii. is repeated until it reached the number of 

edges determined in step i. 

A minor modification is applied when generated in 

Mathematica where 𝑝𝑝  is replaced with 𝑚𝑚  such that the 

random graph is  𝐺𝐺(𝑛𝑛,𝑚𝑚) . For directed network,  an 

additional command as shown in Figure 1 is used. 

 

 
Figure 1. Command used to construct undirected and 

directed ER models 

 
WS  small-world graph model is represented as 𝐺𝐺(𝑛𝑛, 𝑝𝑝, 𝑘𝑘) 

(Watts & Strogatz, 1998). According to Watts and Strogatz,  

(1998), the algorithm for constructing this network model is 

as follows: 

i. Input the number of 𝑛𝑛, 𝑝𝑝 and the number of ranges 

connecting to the nearest neighbour, 𝑘𝑘. 

ii. A network with 𝑛𝑛  is generated and each node is 

connected. 

iii. A nearest clockwise neighbour node is chosen to 

form an edge. 

iv.  The edge followed the p for rewiring and 

reconnected to a chosen node randomly, or else, the edge is 

not connected to any node. 

v. Steps iii. to iv. are repeated around a circle till one 

lap is completed. 

vi.  Then next lap is repeated untill k number of laps. 

For the directed graph, it is built by directing the undirected 

edges randomly. The algorithm is shown in Figure 2. 

 

 
Figure 2. Command used to construct undirected and 

directed WS network models 

 
The BA network model is represented as 𝐺𝐺(𝑛𝑛, 𝑙𝑙) where 𝑛𝑛 is 

the number of nodes and l is the number of new edges 

connected per added node (Barabasi & Albert, 1999).  The 

algorithm for constructing this network model is shown 

below: 

i. Input number of n and l. 

ii. Initially, a two nodes graph with an edge is formed. 

iii. When a new node is added, l edges are added to the 

selected nodes based on preferential attachment. The 

algorithm is shown in Figure 3. 

 

 
Figure 3. Command used to construct undirected and 

directed BA network models 

 
The Sgrid  network model can be constructed in 

Mathematica by using function  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ(ℎ,𝑤𝑤)  where ℎ 

represented the height and 𝑤𝑤  represented the width. To 

implement the direction in this model, we use 

‘DirectedGraph’ command and the code for this model is 

shown in Figure 4. 
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Figure 4. Command used to construct undirected and 

directed Sgrid network model 

 
The Tgrid  network model is represented as 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ(𝑛𝑛𝑖𝑖) where 𝑛𝑛𝑖𝑖  represented the number 

of iterations for generating the triangular grid graph’s nodes.  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ(𝑛𝑛𝑖𝑖)  is a module available in 

Mathematica as shown in Figure 5. 

 

 
Figure 5. Command used to construct undirected and 

directed Tgrid network model 

 
The growing geometrical network  model is constructed  

based on the tessellation of hyperbolic triangle as shown in 

Figure 6 (Taha et al., 2016) on a hyperbolic plane. This kind 

of tringle are generated by two orientation preserving 

generators and  the sum of its angle is less than 180°. For this 

work, hyperbolic triangle 𝑇𝑇(2, 6, 4) is used. The GGN network 

model is grown by iterating the given tessellation. Part of the 

command is shown in Figure 7. 

 
Figure 6. Hyperbolic Triangle, T(n,m,l) where L, M and N 

are the edges of the triangle  

 

 
Figure 7. Command used to construct undirected and 

directed GGN network model 

 
III. RESULT AND DISCUSSION 

 
A. Visualisation of the Constructed Network 

Models 
 
Visualisation of undirected and directed network models with 

n =100 generated using Mathematica are shown in Figure 8. 

As for Tgrid and GGN networks, 105 and 116 nodes are used for 

the visualisation because their construction depends on the 

different number of tessellation where each tesselation are 

related to the number of iterations. From the figure, different 

models display very different topological structures. The 

structure will become more complex and challenging to 

identify as the number of nodes increases. 

 

    

(a) 100 nodes ER (b) 100 nodes WS 

    

(c) 100 nodes BA (d) 100 nodes Sgrid 
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e) 105 nodes Tgrid f) 116 nodes GGN 

 

Figure 8.  The Topological Structure of Undirected (left) and 

Directed (right) Network Models 

 
B. Basic Measures 

 
As complexity increases, it will be difficult to identify some 

basic properties of the network such as the number of nodes, 

the number of degrees and the number of edges.  Performing 

some basic measures on this network can provide some 

crucial information for the networks. The results of the basic 

measures of the undirected and directed network models are 

shown in Table 1 and Table 2 respectively. 

Generally, as the number of nodes increases, the mean 

degree and average path length for most of the models' 

increases while their density decreases. However, there are 

few exceptions. It is found that the density of the undirected 

and directed ER network models remained constant. This is 

because the computed density is similar to the probability set 

in the algorithm for ER model. The mean degree for WS 

model in both connections is also constant. This is again due 

to the algorithm for generating the WS network where we 

have set the node to be connected to two nearest neighbours.  

For the average clustering coefficient, one important piece 

of information we get is that Sgrid recorded  zero value for both 

network connections. This is because Sgrid models do not form 

cliques (triplets of nodes) with their neighbours as required 

in clustering coefficient measurement.  

C. Normalised Laplacian Spectral Density Plot 
(NLSDP)  

 
The spectrum properties vary among network models of 

different sizes and become an important factor for network 

characterisation. NLSDP has a certain advantage compared 

to plots from A(G) and L(G) because the spectrum is bounded 

within eigenvalues [0, 2] hence making it easy for 

comparison. Besides, the spectrum of the NL(G) also reflects 

the global properties of the network (Banerjee, 2008). 

Results from the NLSDP for the six undirected and directed 

network models are shown in Figure 10.   
 

   
(a) Tree graph, 
n=5, e=9, 𝜆𝜆=2, 
1.8, 1, 1, 1, 1, 1, 1, 
0.2, 0 

(b) Triangle 
graph, 
n=3, e=3, 𝜆𝜆= 1.5, 
1.5, 0 

(c) Bow-tie graph, 
n=5, e=6, 𝜆𝜆= 1.5, 
1.5, 1.5, 0.5, 0 

   
(d) Complete 
graph K4,  
n=4, e=6, 𝜆𝜆= 
1.33, 1.33, 1.33, 
0 

(e) Triangle with 4 
nodes addition 
graph K7,  
n=7, e=7, 𝜆𝜆= 1.84, 
1.75, 1, 1, 1, 0.41, 0 

(f) Tree graph, 
n=5, e=4, m1=3 

   
(g) Bipartite-like 
graph,  
n=6, e=8, m1=4 

(h) Bipartite-like 
graph, n=7, e=12, 
m1=5 

(i) Square graph, 
n=7, e=7, 𝜆𝜆= 2, 
1.6, 1.6, 1, 1, 0.4, 
0.4, 0 

 

Figure 9.  Motifs for undirected networks (n=number of 

nodes, e=number of edges, λ=eigenvalues and 

m1=multiplicity of eigenvalue 1) 

Table 1.  Basic measures for directed network models 

Network 
Models 

Numb
er of 
Verte

x 

Number 
of Edges 

Density Total 
number 

of Degree 

Mean 
Degree 

Total 
number 

of In-
Degree 

Mean In-
Degree 

Total 
number 
of Out-
Degree 

Mean 
Out-

Degree 

Mean 
Deviation 

Average 
Path 

Length 

Average 
Clustering 
Coefficient 

ER 100 990 0.10 1980 19.80 990 9.90 990 9.90 2.91 2.25 0.10 

300 8970 0.10 17940 59.80 8970 29.90 8975 29.90 5.49 1.94 0.10 

500 24950 0.10 49900 99.80 24950 49.90 24950 49.90 7.03 1.91 0.10 

1000 99900 0.10 199800 199.80 99900 99.90 99900 99.90 9.80 1.90 0.10 

WS 100 200 0.02 400 4.00 200 2.00 200 2.00 0.66 7.50 0.06 

300 600 0.01 1200 4.00 600 2.00 600 2.00 0.61 11.25 0.09 

500 1000 0.00401 2000 4.00 1000 2.00 1000 2.00 0.58 14.95 0.11 

1000 2000 0.00200 4000 4.00 2000 2.00 2000 2.00 0.49 15.67 0.11 

BA 100 197 0.02 394 3.94 197 1.97 197 1.97 2.18 4.44 0.10 

300 597 0.01 1194 3.98 597 1.99 597 1.99 2.37 5.39 0.03 
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500 997 0.00400 1994 3.99 997 1.99 997 1.99 2.40 5.44 0.02 

1000 1997 0.00200 3994 3.99 1997 2.00 1997 2.00 2.34 6.30 0.00 

Sgrid 100 180 0.02 360 3.60 180 1.80 180 1.80 0.51 8.71 0.00 

300 560 0.01 1120 3.73 560 1.87 560 1.87 0.40 13.63 0.00 

500 940 0.00377 1880 3.76 940 1.88 940 1.88 0.37 13.06 0.00 

1000 1890 0.00189 3780 3.78 1890 1.89 1890 1.89 0.35 17.22 0.00 

Tgrid 105 273 0.03 546 5.20 273 2.60 273 2.60 1.01 3.00 0.22 

210 570 0.01 1140 5.43 570 2.71 570 2.71 0.83 3.38 0.17 

528 1488 0.01 2976 5.64 1488 2.82 1488 2.82 0.60 3.91 0.19 

1035 2970 0.00278 5940 5.74 2970 2.87 2970 2.87 0.46 4.30 0.19 

GGN 116 228 0.02 456 3.93 228 1.97 228 1.97 1.50 3.52 0.20 

373 762 0.01 1524 4.09 726 2.04 726 2.04 0.00 4.24 0.20 

545 1116 0.00376 2232 4.10 1116 2.05 1116 2.05 1.63 4.50 0.22 

1150 2376 0.00180 4752 4.13 2376 2.07 2376 2.07 1.66 4.97 0.22 

 

    
(a) 100 nodes ER (b) 100 nodes WS 

    
(c) 100 nodes BA (d) 100 nodes Sgrid 

    
(e) 105 nodes Tgrid (f) 116 nodes GGN 

Figure 10.  Spectral Plots for Undirected (left) and Directed (right) Network Models  

 

From the spectral plots, we found that the peaks are at 

around eigenvalue 1 to 1.5 for the undirected and 1 for the 

directed connection. Spectral plots for the directed network 

models do not show much variety as compared to the 

undirected one when the number of nodes increases.  The 

main reasons for having all these features can be uncovered 

using network motifs. Motifs are considered simple building 

blocks of complex networks (Wong, 2011) or patterns that 

recurred in many parts of the network (Abedijaberi, 2018). In 

this work, small graphs were created in motif form as shown 

in Figures 9 to investigate these eigenvalues. These kinds of 

motif were found to have a high repetition rate in the network 

models.  

From Figure 9(a), (f), (g) and (h),   we can see that whenever 

there is an addition or duplication of nodes, eigenvalue 1 

increases. Since ER network model has a high eigenvalue 

around 1 in the spectrum, this indicates that ER network has 

a very high tendency to be formed from the combination of 

tree motif and bipartite motif.  

For WS network model, since each node connects to two of 

its nearest neighbour, most of the nodes do not have a high 

degree but instead have many cliques that produce fewer 
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eigenvalue 1. NLSPD of WS network models from Figure 10(b) 

showed a lower hump at 0.3 and upper hump at 1.4. The 

possible explanation of this was due to the occurrence of 

clique-type motifs as shown in Figure 9 where their 

eigenvalues do not focused at eigenvalue 1.  

For BA spectral plot (Figure 10(c)), it shows a sharp peak at 

eigenvalue 1 and two smaller humps at eigenvalue 0.5 and 1.5.  

The Bow-tie motif in Figure 9 produced eigenvalues 0.5 and 

1.5 hence there is high possibility BA networks have a lot of 

bow-tie motifs. Since BA model satisfied the scale-free 

characteristics where there emerge nodes with high degrees, 

tree and bipartite motifs are also part of its building blocks.   

The Sgrid network model has shown a smooth NLSPD for n= 

100, but when the nodes increase, hump were seen at the 

slopes around eigenvalue 0.5 and 1.5. These humps are 

formed if the horizontal expansion is more than the vertical 

one. The square motif appear is clear as it produces 

eigenvalues around 0 2, 1.6, 1.6, 1, 1, 0.4, 0.4 and 0 as clearly 

shown in Figure 9(i). 

For  Tgrid network model, the peak of the eigenvalue shifted 

toward eigenvalue 1.4. This peak is formed mainly due to the 

abundance of clique-type motifs (triangle motifs) in the 

network. As can be seen in Figure 9, the triangle motif 

produces a lot of eigenvalue around 1.5. As for GGN, the high 

peak around eigenvalue 1.5 means that GGN consist of a lot 

of triangle motif. Besides only triangle motifs, GGN network 

models also consist of motifs (c), (d) and (e) as shown in 

Figure 9. As a result, the spectral plot is not exactly like the 

Tgrid but with some smaller peaks between 0.2 to 1.5.  

As for the directed network, the computed eigenvalues are 

in complex numbers where only the real part are used for the 

plots. When directions are added to some of the undirected 

network motifs as can be seen in Figure 11, the eigenvalues 

changed because of the direction flow. As can see from Figure 

11(a) to (d), open loop and closed loop non-cyclic motifs can 

produce many eigenvalues 1 while the cyclic motif  Figure 11(e) 

to (i) usually will produce a mixture of eigenvalues.  

From the spectral plots, as shown in Figure 10, all the 

networks have smaller distribution widths and sharp peaks at 

eigenvalues 1 except Tgrid where the sharp peak is at 

eigenvalues 1 and 1.2. Having a sharp peak at eigenvalue 1 

implies that most of the connection is acyclic and depends on 

motif addition and duplication Figure 11(a) to (d). Since the 

building block of Tgrid is a triangle, it has a greater chance to 

form motifs as in Figure 11(c) to g) hence giving rise to peak 

at eigenvalue 1.2.  

 

   
(a) Tree graph, 
n=5, e=4,                   
𝜆𝜆= 1, 1, 1, 1, 1 

(b) Tree graph, 
n=6, e=8,                     
𝜆𝜆= 1, 1, 1, 1, 1, 1 

(c) Acyclic Bow-
tie graph, n=5, 
e=6,                𝜆𝜆= 1, 
1, 1, 1, 1 

   
(d) Acyclic 
Triangle graph, 
n=3, e=3,                  
𝜆𝜆= 1, 1, 1 

(e) Cyclic Bow-tie 
graph, n=5, e=6,                     
𝜆𝜆= 1.25, 1.25, 1, 1, 
0.5 

(f) Cyclic and  
Acyclic Bow-tie 
graph, n=5, e=6,               
𝜆𝜆= 1.19, 1.19, 1, 1, 
0.6 

   
(g) Cyclic graph, 
n=3, e=3,                     
𝜆𝜆= 1.25, 1.25, 0.5 

(h) Cyclic Square 
graph, n=4, e=4,                     
𝜆𝜆= 1.5, 1, 1, 0.5 

(i) Cyclic 
Pentagon graph, 
n=5, e=5,                
𝜆𝜆= 1.4, 1.4, 0.8, 
0.8, 0.5 

 
Figure 11.  Various Motifs with cyclic or acyclic flow 

(n=number of nodes, e=number of edges and 
λ={eigenvalues}) 

 

Table 2.  Basic measures for undirected network models 

Network 
Models 

Number 
of Vertex 

Number 
of Edges 

Density Total 
number of 

Degree 

Mean 
Degree 

Mean 
Deviation 

Average 
Path 

Length 

Average 
Clustering 
Coefficient 

ER 100 990 0.20 1980.00 19.80 2.91 1.81 0.20 

300 8970 0.20 17940.00 59.80 5.49 1.80 0.20 

500 24950 0.20 49900.00 49.90 7.03 1.80 0.20 

1000 99900 0.20 199800.00 199.80 9.80 1.80 0.20 

WS 100 200 0.04 400.00 4.00 0.66 4.16 0.24 

300 600 0.01 1200.00 4.00 0.61 5.36 0.24 

500 1000 0.01 2000.00 4.00 0.58 5.99 0.26 

1000 2000 0.002 4000.00 4.00 0.49 7.05 0.28 
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BA 100 197 0.04 394.00 3.94 2.18 3.02 0.20 

300 597 0.01 1194.00 3.98 2.37 3.77 0.05 

500 997 0.01 1994.00 3.99 2.40 3.72 0.05 

1000 1997 0.00399 3994.00 3.99 2.33 4.10 0.02 

Sgrid 100 180 0.02 360.00 3.60 0.51 6.67 0.00 

300 560 0.01 1120.00 3.73 0.40 13.33 0.00 

500 940 0.00376 1880.00 3.76 0.37 20.00 0.00 

1000 1890 0.00189 3780.00 3.78 0.35 36.67 0.00 

Tgrid 105 273 0.05 546.00 5.20 1.06 3.00 0.45 

210 570 0.03 1140.00 5.43 0.83 3.38 0.43 

528 1488 0.01 2976.00 5.64 0.60 3.91 0.42 

1035 2970 0.00278 5940.00 5.74 0.46 4.30 0.41 

GGN 116 228 0.03 456.00 3.93 1.50 3.52 0.64 

373 762 0.01 1524.00 4.09 1.61 4.24 0.64 

545 1116 0.01 2232.00 4.10 1.63 4.50 0.64 

1150 2376 0.00179 4752.00 4.13 1.66 4.97 0.63 

For GGN models, we can see a left shift for the peak 

eigenvalue in the directed network shown in Figure 10 as 

compared to the undirected one.  The main reason for this 

shifting towards eigenvalue 1 is the high number of acyclic 

motif, as this motif is much easier to form than the cyclic one.  

 
D. Cheeger Constant 

 
Cheeger constant (hG) is a numerical measure used to check 

whether a graph has a bottleneck, i.e. a point where the 

system is limited by connection (Butler, 2016). hG is related 

to the spectral gap, namely the second smallest eigenvalues 

from the spectrum where it is bounded by the Cheeger 

Inequalities. Cheeger Inequalities is used to calculate the 

lower and upper boundaries for the eigenvalues of the 

networks. 

The hG is affected by two crucial factors, namely edges that 

are needed to be removed and the ratio of the volume of 

subsets. The value of hG becomes larger when more edges are 

removed. This actually implied that the network is more 

difficult to be separated. If ratio vol 𝑆𝑆 : vol 𝑆𝑆̅ is 1, this means 

that the division of the subset is balanced; subset 𝑆𝑆 is equal to 

the subset 𝑆𝑆̅. If it is minimal then, it is a highly unbalanced 

where subset 𝑆𝑆 is very small and subset 𝑆𝑆̅ is very big. From 

our calculation, hG for undirected and directed networks are 

the same.  

The ER network model produces high second eigenvalues 

(Figure 12) as compared to other networks, this means that it 

is difficult to be separated into two subgroups. The results 

displayed in Figure 12 are results that have been filtered 

where subgroups with only one node are ignored, and the 

smallest hG is chosen.  

From Figure 12, we found that the spectral gap for all 

network models decreased when the number of nodes 

increased except for ER network model. This happened 

because ER network model is a random network with low 

clustering among the nodes. It is more difficult to separate 

this network into subgroups and the increase in the spectral 

gap is consistent with the hG values as it increases from 0.37 

to 0.47 for 100 to 500 nodes respectively. 

This is not the case for other network models as hG changes 

less than 0.09 as the number of nodes increases. This implied 

that these network models are well clustered and can have 

many subgroups which might affect the hG calculation. An 

increase in the number of nodes does not affect much on 

separating the network into two subgroups because there is 

an infinite number of ways to separate the graph into two.   
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Figure 12.  Cheeger constant (hG) and spectral gap (𝜆𝜆2) 

against the number of nodes (n) 

 
F. Energy Measurement 

 
The topology structure of an undirected and directed network 

can be determined by looking at the energy ratio, 𝑅𝑅𝐴𝐴𝐴𝐴  and 

𝑅𝑅𝑁𝑁𝑁𝑁  computed based on the energy of A(G) and NL(G) 

respectively.  

From the Table 3 and 4, we found that the undirected Tgrid 

network with 528 nodes and all undirected and directed ER 

network models have 𝑅𝑅𝐴𝐴𝐴𝐴 higher than 1. According to Koolen 

et al. (2000), if adjacency matrix energy is greater than 2𝑛𝑛-2, 

they are called a hyper-energetic network i.e. strongly regular 

graphs (Jahanbakht, 2010) or highly random strongly regular 

graphs (Cameron, 2003) with the number of edges several 

multiple higher than its number of nodes. Since the edges 

generated in ER network are based on probability (p = 0.2, in 

our generation), we can say it is a highly random network.  

For WS, BA, Sgrid, Tgrid and GGN, the average 𝑅𝑅𝐴𝐴𝐴𝐴 for both 

undirected and directed networks are computed as (0.980, 

1.060), (0.742, 0.204), (0.785, 0.264),  (0.984,0.597) and 

(0.502, 0.338) respectively as shown in Figure 13. These 

values do not change much as the network size increases. This 

might be due to the number of edges increase linearly with 

the increases of nodes except for ER which increases 

exponentially.  

 

 

Figure 13. Ratio, RAM and RNL of undirected and directed 
network models 

 

𝑅𝑅𝐴𝐴𝐴𝐴(𝐺𝐺) for WS and Tgrid are higher than BA and Sgrid mainly 

because they tend to form cliques and nodes do not have a 

very high degree. In contrast to BA, some of the nodes might 

have a very high degree but since edges are limited, some of 

the nodes have a low degree implying that it is more spread 

out. As for Sgrid, since the number of degrees of each node 

represents how they are clustered, Sgrid has fewer degrees 

than Tgrid, hence having lower 𝑅𝑅𝐴𝐴𝐴𝐴(𝐺𝐺). As for GGN, it shows 

that it has balanced clustered nodes as well as nodes with low 

degrees. 

As for NL(G), it is found that energy for a complete network 

𝐸𝐸𝑁𝑁𝑁𝑁(𝐺𝐺) and 𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) tends to converge to 2 and 1 respectively. 

Almost all the 𝑅𝑅𝑁𝑁𝑁𝑁  remain constant because the energy is 

linearly correlated with the network size except for ER model 

which has a noticeable decrease. The reason for the decrease 

is due to the exponential increase in edges which causes the 

network to have a high clustering amongst the nodes. 

As for the directed part, the 𝐸𝐸𝐴𝐴(𝐺̅𝐺) and 𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) both have an 

opposite trend. When 𝑅𝑅𝐴𝐴𝐴𝐴 goes up, 𝑅𝑅𝑁𝑁𝑁𝑁 will go down and is 

consistent with the increased network size for both 

connectivity matrices. 𝑅𝑅𝐴𝐴𝐴𝐴(𝐺̅𝐺) depend highly on cycles on the 

digraph. If the digraph has no cycle (acrylic graph) 𝐸𝐸𝐴𝐴(𝐺̅𝐺) = 0 

(Pena & Rada, 2008). Figure 14 shows some energy of the 
motif that has been used here. 

 



ASM Science Journal, Volume 19, 2024  
 

   11 

(a) 

 

(b) 

 

 
𝐸𝐸𝐴𝐴(𝐺̅𝐺) = 0.00 

𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) = 0.00 
 

𝐸𝐸𝐴𝐴(𝐺̅𝐺) = 2.52 

𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) = 1.00 

(c) 

 

(d) 

 

 
𝐸𝐸𝐴𝐴(𝐺̅𝐺) = 2.00 

𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) = 0.79 
 

𝐸𝐸𝐴𝐴(𝐺̅𝐺) = 0.00 

𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) = 0.00 

Figure 14: Energy of motif with directed links 

 

We can see that 13(a) and 13(d) are acyclic hence the 𝐸𝐸𝐴𝐴(𝐺̅𝐺) 

and 𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺) are zero whereas for Figure 14(b) where the motif 

has 2 cycles, the energy is 2.52 and 1.00. For Figure 14(c), 

there is only one cycle, hence the energy is reduced to 2.00 

and 0.79. For 𝐸𝐸𝑁𝑁𝑁𝑁(𝐺̅𝐺), it can have a value of less than 1 if the 

network is not perfectly cyclic. 

With this in mind, when we compare the energy between 

directed and undirected, the values are greatly reduced 

because open-loop motifs that appear in the directed 

networks contribute no energy to the system while only those 

with cyclic close-loop counts. It is understood that those with 

closed-loop means that they are networks that are highly 

clustered together such as WS, ER and Tgrid. ER has the 

highest energy mainly because it has many edges for 

connection and as such produces more cycles than others 

while Tgrid, has the most basic triangle motif in its structure to 

form a cycle. For BA and Sgrid, the energy tends to be lower 

than the others mainly because BA has hubs and many nodes 

have lower degrees while Sgrid’s square motif has a lower 

probability to form a cycle. 
 

 
 

Table 3. Energy and ratio 𝑅𝑅𝐴𝐴𝐴𝐴 of undirected and directed network model using 𝐴𝐴(𝐺𝐺)

 
 

Network Model 
Energy for undirected network, 

𝑬𝑬𝑵𝑵𝑵𝑵(𝑮𝑮) 
Energy for directed network, 𝑬𝑬𝑨𝑨(𝑮𝑮�) 

100 300 500 100 300 500 

Complete Network 198 598 998 98.08 298.04 498.10 

ER 353.13 1814.86 3879.24 119.03 610.16 1311.00 
Ratio, 𝑹𝑹𝑨𝑨𝑨𝑨 1.78 3.03 3.89 1.21 2.04 2.63 

WS 196.78 582.55 973.09 105.93 316.95 525.44 

Ratio, 𝑹𝑹𝑨𝑨𝑨𝑨 0.99 0.97 0.98 1.08 1.06 1.05 

BA 149.73 451.09 713.33 21.18 46.11 120.82 

Ratio, 𝑹𝑹𝑨𝑨𝑨𝑨 0.76 0.75 0.72 0.22 0.16 0.24 
Sgrid 153.50 472.72 787.47 27.31 75.93 128.58 

Ratio, 𝑹𝑹𝑨𝑨𝑨𝑨 0.78 0.79 0.79 0.28 0.26 0.26 

 105 210 528 105 210 528 

Complete Network 208 418 1054 102.808 207.818 526.001 

Tgrid 201.14 411.28 1054.73 62.58 117.00 325.81 

Ratio, 𝑹𝑹𝑨𝑨𝑨𝑨 0.97 0.98 1.00 0.61 0.56 0.62 

 116 373 545 116 373 545 

Complete Network 230 744 1088 114.08 371.05 543.04 

GGN 116 373 545 35.24 126.56 197.04 
Ratio, 𝑹𝑹𝑨𝑨𝑨𝑨 0.50 0.50 0.50 0.31 0.34 0.36 
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IV. CONCLUSION 
 

In this work, we have managed to construct six network 

models namely ER, WS, BA, Sgrid, Tgrid and GGN with 

undirected and directed connections using Mathematica with 

a varied number of nodes. The spectrum of NL(G) has been 

computed for each network model and was analysed using 

spectral plots, Cheeger constant and energy measurement.  

From NLSDP, it has revealed that the different undirected 

network models, showed very different patterns which can be 

easily recognised. Since complexity increases when the 

network grows bigger, network such as ER, WS and BA 

become very difficult to be recognised and classified. 

However, from the spectral plots, the pattern remains 

consistent when the number of nodes increased from 100 to 

500. For directed network models, most of the models 

showed a very sharp peak at eigenvalue 1 except for Tgrid and 

GGN, which have a small and a sharp peaks feature. The 

unique plot pattern in the network models can be explained  

and analysed using network motifs. Since different graph 

motifs produced distinct eigenvalues, the addition or 

multiplication of them affects the patterns of spectral density  

 

 

plots. Models that have a sharp peak at eigenvalue 1 are 

expected to have tree type and bipartite motifs as the main  

building block, while those having other peaks beside 1 have 

a combination of clique-type motifs.  In the directed plots, 

eigenvalues are mainly affected by whether the motif is cyclic 

or noncyclic and whether they are open or closed loops. 

Motifs with open loop and noncyclic closed loop produced a 

high number of eigenvalue 1, while those with closed loop and 

cyclic can produced a different range of eigenvalues. 

Cheeger constant (hG) measurement does not consider 

direction hence undirected and directed connections produce 

a similar result. From the measurement, ER models have the 

highest hG followed by BA and WS. Having high hG imply that 

it is much harder to be separated due to the high volume of 

edges and random distribution of its edges. As the number of 

nodes increases, hG increased for ER model. 

In the energy measurement, 𝐴𝐴(𝐺𝐺) and 𝑁𝑁𝑁𝑁(𝐺𝐺) are used in 

both undirected and directed network models. A comparison 

between energy measurement using 𝐴𝐴(𝐺𝐺)  and 𝑁𝑁𝑁𝑁(𝐺𝐺)  have 

shown that both ratios for WS, BA, Sgrid, Tgrid and GGN do not 

change much as the network size increase mainly because the 

edges increase linearly with the numbers of nodes. Energy 

measurement for the directed networks shows that the energy 

Table 4. Energy of undirected and directed network model using normalised Laplacian 𝑁𝑁𝑁𝑁(𝐺𝐺) 

Network Model 
Energy for undirected, 𝑬𝑬𝑵𝑵𝑵𝑵(𝑮𝑮) Energy for directed network, 𝑬𝑬𝑵𝑵𝑵𝑵(𝑮𝑮�) 

100 300 500 100 300 500 

Complete Network 2 2 2 0.99 1.00 1.00 

ER 18.03 30.48 38.97 6.12 10.26 13.21 

Ratio, 𝑹𝑹𝑵𝑵𝑵𝑵 0.18 0.10 0.08 0.12 0.07 0.05 

WS 42.61 128.03 213.8 9.14 27.19 43.15 

Ratio, 𝑹𝑹𝑵𝑵𝑵𝑵 0.43 0.43 0.43 0.09 0.09 0.09 

BA 40.17 118.43 186.44 3.97 8.63 27.02 

Ratio, 𝑹𝑹𝑵𝑵𝑵𝑵 0.40 0.39 0.37 0.08 0.06 0.11 

Sgrid 43.26 126.65 211.27 7.18 19.81 33.84 

Ratio, 𝑹𝑹𝑵𝑵𝑵𝑵 0.43 0.42 0.42 0.14 0.13 0.14 

 105 210 528 105 210 528 

Complete Network 2 2 2 1.0 1.0 0.98 

Tgrid 39.46 76.91 189.00 12.04 21.71 58.19 

Ratio, 𝑹𝑹𝑵𝑵𝑵𝑵 0.38 0.36 0.36 0.23 0.21 0.22 

 116 373 545 116 373 545 

Complete Network 2 2 2 1.0 1.0 1.0 

GGN 52.23 164.81 240.30 8.12 28.16 47.15 

Ratio, 𝑹𝑹𝑵𝑵𝑵𝑵 0.45 0.44 0.44 0.14 0.15 0.17 



ASM Science Journal, Volume 19, 2024  
 

13 
 

is much smaller than the undirected part because it depends 

on closed-loop network. Open-loop and acyclic networks give 

zero energy value to the system. 

For future research, the spectral analysis can be performed 

on real-world networks because the spectral analysis in this 

work is limited to network models. 
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