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This study aims to improve the photometric redshifts (photo-zs) of galaxies by combining the use of 

template-based and machine learning algorithms, notably the Bayesian Photometric Redshift (BPz) and 

Artificial Neural Networks for Redshifts 2 (ANNz2), so we can advantage-leverage the complementary 

aspects of both techniques and achieve improved photo-z predictions. In this work, we introduce a 

technique where the outputs of the template-based photo-z (the best-fit template type and photo-z) are 

added as inputs to ANNz2, and we see that there is an improvement in [𝜎𝜎RMS, 𝜎𝜎68] giving values as low as 

[0.0474, 0.0471], [0.0368, 0.0253] and [0.0213, 0.0168] in the SDSS Stripe-82, CMASS, and LOWZ 

samples, respectively. This study is considered an extension of our previous work to improve photo-z 

values, which enhances its use in fainter and deeper sky surveys, opening broader horizons to develop 

these methods and finding improved methods for measuring galaxy photo-zs. 

Keywords: galaxies; distances and redshift methods; photometric methods; data analysis. 

 

 
I. INTRODUCTION 

 
Modern astronomy relies heavily on the measurement of 

galaxy redshifts to help us comprehend the nature and 

development of the Cosmos. Understanding a galaxy’s 

creation, development, and grouping depends on knowing its 

velocity, distance, and other cosmic characteristics, most of 

which may be determined by its redshift. Hubble (1929) 

established what is now known as Hubble's law, which links 

a galaxy's redshift to its distance, now known as Hubble's law. 

Also, the Big Bang model of the universe was established in 

large part because of the observation of galaxy redshifts. The 

Big Bang model foresaw the cosmic microwave background 

(CMB) radiation, which was found in 1964 by Penzias and 

Wilson (Penzias & Wilson, 1965). The redshift of the CMB is 

consistent with the universe's expansion. They make it 

possible to examine phenomena as a function of time and 

distance, as well as to identify structure formations like 

galaxy clusters, measuring distance-dependent quantities 

such as luminosities and masses.  

Redshifts are also essential for separating large-scale 

structures and galaxies along the line of sight. The 

characteristics of the supermassive black holes in the centres 

of galaxies have also been studied using measurements of 

galaxy redshifts. For instance, millions of quasars, which are 

very brilliant objects propelled by supermassive black holes, 

have been found by the Sloan Digital Sky Survey (SDSS, 

Adelman-McCarthy et al., 2007). Artificial neural networks 

(ANNs) are used by machine learning algorithms like ANNz2 

to discover intricate correlations between the observed 

photometric characteristics and the accompanying 

spectroscopic redshifts (spec-zs). These algorithms are highly 

suited for dealing with varied and complicated galaxy 

populations because they can capture detailed patterns and 

correlations in the data. The observed photometric data of 

galaxies with known spectroscopic redshifts are compared 

using template-based methods, like Bayesian Photometric 

Redshifts (BPz & Benitez, 2000), which draw on a library of 

spectral templates. The redshift distribution’s probabilistic 

estimates are provided by BPz by fitting the observed data to 
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these templates. This approach is especially helpful for 

populations of well-studied galaxies with a constrained 

variety of spectral properties. 

Various studies have investigated adding morphological 

information, beyond the usual galaxy-integrated colours, as 

training input for the machine to improve photometric 

redshift (photo-z) estimations. For instance, Menou (2019) 

has developed a multilayer perceptron / convolutional neural 

network (MLP-convnet) they find that it can significantly 

improve the accuracy of photo-z estimation by incorporating 

morphological features of galaxies. The SDSS photometry 

and morphological data are used in the empirical 

methodology of Vince and Csabai (2006), and they 

discovered that the poor association between morphology 

and redshift results in very minor improvements in photo-z 

estimate accuracy. Soo et al. (2018) found that the impact of 

galaxy morphology on photo-z quality is more significant for 

bright SDSS samples than for general samples of galaxies 

with good 5-band ugriz photometry. However, we can note 

that many estimations are purposefully geared towards the 

target demographic, and the estimates perform best for 

populations where large spectroscopic samples are available 

for training and testing. Although difficult, improving photo-

z quality is necessary to further our knowledge of cosmology. 

As we analyse deeper and wider data sets for more and more 

stringent tests of cosmological models, requirements on 

photo-z methods steeply increase. 

Numerous attempts exist to estimate and explore the 

synergy between different photo-z methods. For instance, 

studies explore how the synergies between narrow-band 

photometric data and large imaging surveys can be utilised to 

enhance broadband photo-zs, while Gomes et al. (2018) 

found that incorporating near-infrared YJHK filters and 

angular size data in the training, validation, and testing of 

photo-z estimation significantly improved accuracy. they 

have used two different photo-z algorithms, BPz and ANNz2, 

to obtain photo-zs for galaxies. They compare the results 

from these two codes to the KiDS pipeline solution. 

In this work, we present how we can improve photo-zs of 

galaxies via exploring the synergy of two methods: template 

and machine learning, by using the parameters 𝑡𝑡𝑏𝑏 (the best fit 

template set in BPz) and 𝑧𝑧𝑏𝑏 (the best fit template-based 

photo-z) from BPz that we can use to improve the 

performance of the ANNz2 algorithm when utilising the 

artificial neural network (ANN) approach to improve photo-

zs. 

 
II. PHOTOMETRIC DATA 

 
A. Sloan Digital Sky Survey (SDSS) 

 
The Sloan Digital Sky Survey (SDSS; York et al., 2000), which 

has been in continuous operation since April 2000, provides 

a chance to create the biggest and most comprehensive 

cluster sample. The photometry covers 14 000 deg2 and is 

provided in five wide bands (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢), along with the 

subsequent spectroscopic measurements. Millions of 

astronomical objects such as stars, galaxies, quasars, and 

other celestial phenomena, have been studied by the survey. 

The gathered information has been applied to a variety of 

scientific studies, including mapping galaxy distributions, 

identifying dark matter characteristics, and discovering new 

celestial. In this work, we will present different methods to 

improve the estimation of the redshift of galaxies. We use 

different data sets from SDSS through three different 

samples, namely the Stripe-82 (S82) Sample, the Low 

Redshift (LOWZ) Sample, and the CMASS Sample, each 

representing galaxy samples of a certain redshift regime and 

colour selection. 

 
B. Stripe-82 (S82) Sample 

 
Stripe-82 is a 2.5° wide stripe in the Southern Galactic Cap 

(−50° < 𝛼𝛼 < 60°, 1.25° < 𝛿𝛿 < 1.25°) that spans all five SDSS 

bands and covers a total size of 275 deg2. Stripe-82 has been 

observed in multiple SDSS data releases, due to its location 

on the celestial sphere and its scientific significance for many 

astrophysical investigations. Numerous types of studies have 

made use of the data from Stripe-82, including investigations 

into the properties and distribution of galaxies, the universe's 

large-scale structure, star populations, study transient and 

variable phenomena.  

To test our methodology on the S82 sample, we used 29 541 

galaxies with the following cut: redshift range of 0.1 < 𝑧𝑧 <

1.2, class=GALAXY, type=3 (extended object), magnitude 

cuts of 16.24 < 𝑢𝑢 < 30.99, 16.04 < 𝑔𝑔 < 28.85, 16 < 𝑟𝑟 <

24.49, 15.57 < 𝑖𝑖 < 24.60 and 15.17 < 𝑧𝑧 < 24.98 to remove 

outliers.  We applied the cuts to the entire sample of galaxies, 
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which was later divided into three groups (testing, validation, 

and training) of 9847 galaxies each. 

 
C. Low Redshift (LOWZ) Sample 

 
The Low Redshift (LOWZ, Tojeiro et al., 2014) sample is a 

specific selection of galaxies with low redshift values from the 

SDSS. The LOWZ sample was designed to study galaxies’ 

characteristics and development in the nearby universe. The 

LOWZ sample was introduced as part of the Baryon 

Oscillation Spectroscopic Survey (BOSS), a component of 

SDSS-III (Dawson et al., 2013). The chosen galaxies are 

among the brightest and reddest in the population of low-

redshift galaxies. To nearly triple the sample's number 

density, the LOWZ sample is intended to extend the SDSS-

I/II Cut I in the Luminous Red Galaxy (LRG, Eisenstein et al. 

2001) sample to fainter luminosities at 𝑧𝑧 ≈ 0.4. 

In this work, the LOWZ sample focuses on galaxies with low 

redshifts, where a total of 45 600 galaxies (testing, training, 

and validation) with redshifts ranging from 0.1 < z <

0.5  were selected for this study. We ensured that in the 

sample, type=3, class=GALAXY and the warning flag 

zWarning=0. 

  
D. The CMASS Galaxy Sample 

 
The BOSS program within SDSS selected the CMASS galaxy 

sample to study the universe's large-scale structure and 

investigate the aggregation properties of galaxies (Eisenstein 

et al., 2011). Colour and magnitude cuts were used as the 

selection criteria for the CMASS sample, where they used 

similar selection cuts to those utilised by Cut-II of LRGs from 

SDSS-I/II but extended them both bluer and fainter to 

increase the number density of targets in the redshift range 

0.4 < 𝑧𝑧 < 0.7 (Reid et al., 2016).  

In this work, we applied the same methodology as above, by 

selecting 55 140 galaxies, divided into three groups (testing, 

training, and validation) of 18 380 galaxies each. Galaxies 

from the CMASS sample with a redshift of 0.1 < 𝑧𝑧 < 0.9, 

type=3, class=GALAXY and zWarning=0 were selected. 

 

III. PHOTOMETRIC REDSHIFT    
ALGORITHMS 

 
The photo-z technique described in the literature can be 

classified into two broad categories: the empirical training set 

method, and the fitting of spectral energy distributions (SED) 

by synthetic or empirical template spectra. The first approach 

is also known as the machine learning method, an empirical 

relationship between magnitudes and redshifts is derived 

using a subsample of objects (the training set) in which both 

the redshifts and photometry are available (Connolly et al., 

1995). A slightly modified version of this method was used by 

(Wang et al., 1998) to derive redshifts in the Hubble Deep 

Field (HDF–N) by means of a linear function of colours. In 

the SED-fitting approach, a spectral library is used to 

compute the colours of various types of sources at any 

plausible redshift, and a matching technique is applied to 

obtain the “best-fitting” redshift. This technique has been 

used extensively in deep cosmological surveys. Although 

most methods proposed to improve the estimates of galaxy 

redshifts have shown that machine learning methods have a 

clear performance advantage, however, both template and 

machine learning methods have their advantages that we can 

benefit from. 

In this work, we improved and enhanced the redshift of 

galaxies using the complementary features of both 

approaches by combining the advantages of ANNz2 with 

template-based data and redshift estimates from BPz, the 

best-fitting redshift is referred to as 𝑧𝑧𝑏𝑏 (or z_b in the 

algorithm). Based on each object’s observed photometric data 

and comparison to template spectra or empirical models, the 

BPz algorithm determines the probability distribution 

function (PDF) of redshift for each item (Benitez, 2000). 

Whereas the best-fit template model for a given galaxy is 

represented by the coefficient 𝑡𝑡𝑏𝑏 (or t_b in the algorithm) in 

BPz, the template index attached to 𝑡𝑡𝑏𝑏 indicates the template 

applied at the best-fit estimate based on the SED template set 

used. The parameters 𝑡𝑡𝑏𝑏 and 𝑧𝑧𝑏𝑏 from BPz (by leveraging the 

complementary aspects of both techniques) can be used to 

improve the performance of the ANNz2 algorithm to improve 

photo-zs. In the following sections, we will explain the 

algorithms ANNz2 and BPz in further detail. 
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A. ANNz2 
 
ANNz2 is a machine learning algorithm that Sadeh et al. 

(2016)  created to overcome the difficulties and restrictions 

associated with photo-z estimation. This algorithm aims  to 

correctly extract the related uncertainties, create both single-

value solutions and PDFs, and optimise the performance of 

the photo-z estimate. 

ANNz2 has been used to estimate photo-zs for BOSS 

(Dawson et al., 2013), the Dark Energy Survey (DES, Abbott 

et al., 2005), and the Legacy Survey of Space and Time (LSST; 

Schmidt et al., 2020). It has been demonstrated to be a very 

efficient technique for calculating photo-zs. In this work, we 

chose to use ANNz2 because it is capable of doing regression 

estimation of single-value photo-z solutions as well as PDFs. 

We optimise ANNz2 by employing an ANN architecture of 

𝑁𝑁: 2𝑁𝑁: 2𝑁𝑁: 1, where 𝑁𝑁 is the number of inputs used for the 

photo-z determination, which may range from 5 to 7, 

depending on the number of input parameters used (ugriz, zb 

or tb). 

 
B. BPz 

 
The Bayesian approach of Benitez (2000) is implemented in 

the Bayesian Photometric Redshift (BPz) algorithm. The 

redshift-type likelihood ℒ(𝐶𝐶|𝑧𝑧,𝑇𝑇), where 𝐶𝐶 is the colour of a 

galaxy, 𝑧𝑧 a certain redshift and 𝑇𝑇 a spectral type, is produced 

by comparing the observed galaxy magnitudes with the 

redshifted template library weighted by BPz using a prior 

probability 𝑝𝑝(𝑧𝑧,𝑇𝑇|𝐶𝐶). Due to colour/redshift degeneracies, 

ℒ(𝐶𝐶|𝑧𝑧,𝑇𝑇) is frequently multimodal. The addition of previous 

knowledge aids in the elimination of unrealistic solutions and 

compactification of 𝑝𝑝(𝑧𝑧,𝑇𝑇), which increases photo-z accuracy 

and lowers the incidence of catastrophic outliers. BPz can 

compute redshifts based on galaxy spectra information, even 

at high redshifts, by accurately modelling their spectral 

evolution. This eliminates the requirement for expensive and 

imprecise spectroscopic source observations for training sets. 

In this work, the template-based algorithm BPz settings are 

set as follows: the template list used was those from Brown et 

al. (2014), the prior used was 'hdfn_gen', the redshift 

resolution was set to 0.002, and our minimum magnitude 

uncertainty is 0.001. As in our previous paper (Alshuaili et al., 

2022), we chose the Brown templates as it gives better results 

when compared to other templates, such as the CWW 

templates. 

 
IV. IMPROVEMENT IN PHOTOMETRIC 

REDSHIFTS 
 
Each of the samples described above (the Stripe-82, LOWZ 

and CMASS samples) was tested with BPz independently, and 

then we extracted 𝑡𝑡𝑏𝑏 and 𝑧𝑧𝑏𝑏 from BPz and included them into 

the machine learning algorithms (ANNz2) to enhance its 

performance. As mentioned in Section IIIA, ANNs are used 

in ANNz2 to calculate photo-zs. The ANN is trained using a 

training set of objects with known spectroscopic redshifts, 

and it then learns the intricate relationship between 

photometric magnitudes and the redshift. 

For each sample running on ANNz2, we made four tests by 

varying the number of inputs: the first one is only 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, the 

second is 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑧𝑧𝑏𝑏, third is 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑡𝑡𝑏𝑏 and the last is 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑡𝑡𝑏𝑏 + 𝑧𝑧𝑏𝑏. The goal of this step is to draw conclusions 

and study the extent of improvement in the performance 

metrics for each of these processes. The performance metrics 

used in this work are the root-mean-square error (𝜎𝜎RMS), the 

68th percentile error (𝜎𝜎68) and the outlier fraction rate (𝜂𝜂out), 

which were all defined and used in Soo et al. (2018). 

 
A. Photo-zs on the Stripe-82 Sample 

 
The inclusion of 𝑡𝑡𝑏𝑏 and 𝑧𝑧𝑏𝑏 samples from BPz enhances the 

training and validation process of the ANNz2 algorithm, 

resulting in more accurate and reliable redshift estimates in 

the Stripe-82 sample, this can be seen from the results in 

Table 1 and Figure 1, which show an improvement in the 

value of 𝜎𝜎68 and 𝜎𝜎RMS. This is especially true when adding 𝑧𝑧𝑏𝑏 

to ANNz2, as the value of 𝜎𝜎RMS = 0.0475 is lower as compared 

to the default 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 value in ANNz2 (0.0477) and BPz 

(0.0720).  



ASM Science Journal, Volume 19, 2024  
 

5 

Table 1. Performance of photo-z for the Stripe-82 Sample, as shown through the root-mean-square error (𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅), 68th 

percentile error (𝜎𝜎68), and outlier fraction (𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜) when including 𝑧𝑧𝑏𝑏 and 𝑡𝑡𝑏𝑏 from BPz as inputs in ANNz2. The lowest values 

are shown in green. 

Training Parameters 𝝈𝝈𝐑𝐑𝐑𝐑𝐑𝐑 𝝈𝝈𝟔𝟔𝟔𝟔 𝜼𝜼𝐨𝐨𝐨𝐨𝐨𝐨 (%) 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑧𝑧𝑏𝑏 0.0474 0.0204 1.76 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑡𝑡𝑏𝑏 0.0486 0.0225 1.92 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑧𝑧𝑏𝑏 , 𝑡𝑡𝑏𝑏 0.0479 0.0216 1.63 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧 (ANNz2) 0.0477 0.0210 1.75 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧 (BPz) 0.0720 0.0364 4.64 

 

 

Figure 1. Photo-z vs. spec-z, comparing the performance of ANNz2 (top left), BPz (top right) with the methods we used to 

improve the photo-zs in the Stripe-82 Sample, i.e. adding 𝑡𝑡𝑏𝑏 (bottom left), 𝑧𝑧𝑏𝑏 (bottom middle) and both 𝑧𝑧𝑏𝑏 and 𝑡𝑡𝑏𝑏 (bottom 

right) as input for ANNz2. The blue lines define the limits for outliers, defined by 𝜂𝜂out (see Soo et al., 2018). 

 

The percentage of improvement may be low overall (0.4%), 

however, we note that the density of points closer to the 

diagonal lines in Figure 1 has increased particularly in the 

higher redshift region, for example, the 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑧𝑧𝑏𝑏 run 

increases the 1𝜎𝜎 contour line redshift upper limit from 0.7 to 

0.9. This is helpful as it allows more higher redshift galaxies 

to be retained in the situation where an error cut is needed to 

filter out redshifts with higher uncertainties, this parallels the 

effects of adding galaxy morphology into a similar sample in 

Soo et al. (2018). We note also that the improvement in 𝜎𝜎RMS 

here is close to the improvement we found in our previous 

work (Alshuaili et al., 2022) on the same sample, which 

achieves a value of 𝜎𝜎RMS = 0.0471. 
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B. Photo-zs on the LOWZ and CMASS Samples 
 
The use of LOWZ and CMASS samples in this work are meant 

to complement each other in the redshift range, since LOWZ 

has 0.1 < 𝑧𝑧 < 0.5, while CMASS has 0.4 < 𝑧𝑧 < 0.7, allowing 

us to study the effects of our methodology on both a low and 

high redshift range. For LOWZ, we observe in Table 2 that 

the result is slightly better when using all 7 inputs (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 +

𝑧𝑧𝑏𝑏 + 𝑡𝑡𝑏𝑏) as compared to when using only 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑧𝑧𝑏𝑏, while as 

visualised in Figure 2, the performance improvement is very 

similar between the two methods. We also compared these 

results with those of Meshcheryakov et al. (2015), Brescia et 

al. (2014) and Soo et al. (2018) and we found that our value 

of 𝜎𝜎RMS value is shown to be better. 

 

Table 2. Performance of photo-z for the LOWZ Sample, as shown through 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅, 𝜎𝜎68 and 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 when including 𝑧𝑧𝑏𝑏 and 𝑡𝑡𝑏𝑏 from 

BPz as inputs in ANNz2. The lowest values are shown in green, and the results of ANNz2, BPz, and three previous studies 

are shown as references. 

Training Parameters 𝝈𝝈𝐑𝐑𝐑𝐑𝐑𝐑 𝝈𝝈𝟔𝟔𝟔𝟔 𝜼𝜼𝐨𝐨𝐨𝐨𝐨𝐨 (%) 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑧𝑧𝑏𝑏 0.0217 0.0178 0.025 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑡𝑡𝑏𝑏 0.0224 0.0182 0.037 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑧𝑧𝑏𝑏 , 𝑡𝑡𝑏𝑏 0.0216 0.0178 0.025 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧 (ANNz2) 0.0219 0.0177 0.037 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧 (BPz) 0.0405 0.0249 0.820 

Meshcheryakov et al. (2015) 0.0252 – – 

Brescia et al. (2014) 0.0280 – – 

Soo et al. (2018) 0.0228 0.0177 0.100 

 

Figure 2. Photo-z vs. spec-z, comparing the performance of ANNz2 (top left), BPz (top right) with the methods we used to 

improve the photo-zs in the LOWZ Sample (bottom, similar arrangement as in Figure 1). 
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On the other hand, for the CMASS sample, ANNz2 is still 

consistently better than BPz (Table 3), while an 

improvement in 𝜎𝜎RMS is observed when using 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑧𝑧𝑏𝑏 as 

inputs to ANNz2, giving 𝜎𝜎RMS = 0.0368 compared to 0.0374 

when training with only the five 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 magnitudes (visualised 

in Figure 3). It also appears to be an improved result when 

compared to the results of previous studies (Soo et al., 2018), 

considering the change in the method used in these two 

approaches. Here we also note that the improvement shown 

in the CMASS sample is more than that of the LOWZ sample, 

which is in line with our previous deduction that 𝑧𝑧𝑏𝑏 brings 

more improvement to photo-zs of galaxies in the higher 

redshift regime. 

 

Table 3. Performance of photo-z for the CMASS Sample, as shown through 𝜎𝜎𝑅𝑅𝑅𝑅𝑅𝑅, 𝜎𝜎68 and 𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜 when including 𝑧𝑧𝑏𝑏 and 𝑡𝑡𝑏𝑏 

from BPz as inputs in ANNz2. The lowest values are shown in green, and the results of ANNz2 and BPz and Soo et al. 

(2018) are shown as reference. 

Training Parameters 𝝈𝝈𝐑𝐑𝐑𝐑𝐑𝐑 𝝈𝝈𝟔𝟔𝟔𝟔 𝜼𝜼𝐨𝐨𝐨𝐨𝐨𝐨 (%) 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑧𝑧𝑏𝑏 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑡𝑡𝑏𝑏 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧, 𝑧𝑧𝑏𝑏 , 𝑡𝑡𝑏𝑏 

0.0368 0.0253 0.838 

0.0375 0.0257 0.903 

0.0372 0.0255 0.838 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧 (ANNz2) 

𝑢𝑢,𝑔𝑔, 𝑟𝑟, 𝑖𝑖, 𝑧𝑧 (BPz) 

0.0374 0.0256 0.854 

0.0465 0.0284 1.420 

 

Figure 3. Photo-z vs. spec-z comparing the performance of ANNz2 (top left), BPz (top right) with the methods we used to 

improve the photo-zs in the CMASS Sample (bottom, similar arrangement as in Figure 1). 
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The analysis of the four samples in this work also 

demonstrates that the runs using 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑡𝑡𝑏𝑏 do not seem to 

provide any noticeable improvement, but instead mainly 

added noise to the machine learning algorithm. The template 

type 𝑡𝑡𝑏𝑏 output from BPz is a number running from 1 to 129, 

representing each of the 129 Brown et al. (2014) templates 

arranged based on their Hubble types (ellipticals, spirals and 

others). It was initially hoped that the machine learning 

algorithm would pick up the correlation between the galaxy 

types to their redshifts through 𝑡𝑡𝑏𝑏 to improve the photo-z 

estimate, however, it is shown to be not the case. In the 

future, we attempt to improve the representation of this 

correlation, e.g. by using k-means clustering, grouping of 

galaxy types, etc, to see if this correlation plays a role in 

improving photo-zs at all. 

 
V. CONCLUSION AND FUTURE WORK 

 
In the context of improving photo-z estimates using the 

ANNz2, it is found that the best-fit template photometric 

redshift (𝑧𝑧𝑏𝑏) from BPz can be utilised as an additional input 

feature to enhance the performance of the photo-zs produced. 

The best-fit template type (𝑡𝑡𝑏𝑏) from BPz could potentially 

provide valuable information about the spectral 

characteristics of the galaxies, however, including this 

information as a feature in the ANNz2 algorithm does not 

improve the photo-z estimation. This work demonstrates the 

capability of adding 𝑧𝑧𝑏𝑏 is shown to improve the photo-z 

accuracy for various samples of galaxies (Stripe-82, LOWZ 

and CMASS), improving the root-mean-square error (𝜎𝜎RMS) 

values by percentages of 2.0%, 1.4%, 1.6% and 0.7%, 

respectively, for these samples. We believe there is still room 

for improvement in this research finding, and we intend to 

explore and combine other related methodologies to 

synergise different photo-z algorithms. In this study, we 

concentrated on a particular set of complementary features, 

but we can potentially explore more feature spaces. 

We believe there could be additional characteristics or data 

sources that might offer helpful details for estimating photo-

z. Other feature spaces like multi-wavelength photometry, 

spectroscopic measurements, galaxy morphological data, or 

even auxiliary data from other surveys, may be explored and 

included in future studies. We may significantly advance the 

accuracy and precision of photo-zs by following these 

approaches for future research, which will enable us to learn 

new things about the universe and its development. 
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