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Process mining is an interdisciplinary field that bridges the gap between data mining and business 

process analysis. It revolves around the core concept of leveraging recorded event logs to automate 

the generation, validation, and refinement of process model. A majority of currently accessible 

process mining solutions are distributed in form of black box systems - software with no openly 

accessible source code - or as libraries for scripting languages like Python or R. In this sense, it is 

necessary to design and build an understandable foundation of a process mining library with the 

intention of presenting the possibility of incorporating process mining into many programs written 

in the language or aiding other programmers interested in the potential of such technologies. 

Therefore, this paper describes and demonstrates the usability of an advanced algorithm for process 

mining in the .NET platform, namely, the Heuristic miner for process modelling. 
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I. INTRODUCTION 
 
Process mining is a scientific discipline that falls between 

data mining and business process analysis (Van der Aalst, 

2016). The main idea of process mining is to use the execution 

BPs event logs that are recorded in the information system to 

automatically generate, check and enhance process models.  

Moreover, process mining consists of three types, which are 

discovery, conformance, and enhancement (Coutinho-

Almeida & Cruz-Correia, 2022). Discovery: An automatic 

process modelling methodology that takes event logs as input 

and produces a BP model as output. Conformance: compares 

the newly discovered process model with the existing process 

model. The purpose is to identify bottlenecks and discover 

discrepancies. Enhancement: focuses on improving or 

extending the existing process model using the information 

stored in event logs. In this context, the discovery technique 

has always been a major topic in process mining research. 

Furthermore, there are several process mining tools. The 

majority of currently available process mining solutions are 

distributed as black box systems – software with no openly 

accessible source code – or as libraries for scripting languages 

like Python (Waibel, 2022) or R (Janssenswillen et al., 2019), 

which are generally regarded as unsuitable for more complex 

software projects. 

The objective of this paper, as well as the associated 

implementation, is to design and build a solid, easily 

extensible, and understandable foundation for a process 

mining library in C#, a popular, modern, coherent, and 

widely used, primarily object-oriented programming 

language, with the intention of not only presenting the 

possibility of incorporating process mining into many 

programs written in the language or assisting other 

programmers interested in the potential of such technology. 

This paper, in particular, describes a discovery algorithm 

for a library written in the C# programming language and 

built in the. NET Core 6 framework. The reader is first 

introduced to the fundamentals of process mining. Just after 

that, definitions and implementations of commonly used 

models are introduced, followed by an explanation of the 
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heuristic miner algorithm. This algorithm is also 

demonstrated in the paper. The library is accessible via the 

GitHub 1platform. 

Upcoming sections of this paper are organised as follows: 

Section 2 presents the theoretical background related to our 

study field. Section 3 explains the heuristics miner algorithm. 

This section will lead us to understand the process mining 

library in terms of components and logical links. Section 4 

illustrates the implementation of the heuristics’ miner 

algorithm in the .NET framework. The conclusion is 

mentioned in section 5. 

 
II. THEORETICAL BACKGROUND 

 
In this section, we present terminologies used throughout our 

paper. In this sense, we define the following concepts and 

notations:  Event logs, Basic relations, Dependency measures, 

Dependency graph, Causal Net and Petri Net.  

For this purpose, this section content will be organised as 

follows: Definition 1 (Event logs), Definition 2 (Basic 

relations), Definition 3 (Dependency measures), Definition 4 

(Dependency graph), Definition 5 (Causal Net) and 

Definition 6 (Petri Net). 

 
A. Event Logs 

 
Process Mining typically assumes that BP (Business Process) 

execution data are stored as event logs (Van der Aalst, 2016; 

Coutinho-Almeida & Cruz-Correia, 2022). An event can be 

considered as the starting point of process mining. The event 

log structure is illustrated in Figure 1, where the process is 

made of either cases or finished process instances. Each case 

is composed of a series of occurrences known as a trace. 

Depending on the organisation's needs, an event can include 

any number of extra properties (timestamps, costs, resources, 

etc.). These extra characteristics are critical for tracking BP 

improvement. For example, bottlenecks cause can slow down 

the process flow. 

The event logs notation may depend on the information 

system treatment or objectives. However, the main objective 

is the quality of these events that can heavily affect the 

process model representation and, by necessity the main 

business of the organisation. Therefore, event logs should be 

treated as first-class. 

 

 

 
Figure  1. Process mining overview (El-Gharib & Amyot, 2019). 

 
Definition 1 (Event log).  

Let 𝑇𝑇 be a set of activities,  

𝜁𝜁 ∈ 𝑇𝑇∗  is an event trace, i.e., sequence of activity identifiers, 

L ⊆ 𝑇𝑇∗ is an event log, i.e., a multiset of event traces.  

To illustrate the basic concepts used in the following chapters, we use the event log:  

 

 

1 https://github.com/lasaris/ProcessM.NET  
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𝐿𝐿1 = [〈𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑏𝑏〉10, 〈𝑎𝑎,𝑑𝑑, 𝑐𝑐,𝑏𝑏〉10 , 〈𝑎𝑎, 𝑒𝑒, 𝑏𝑏〉10, 〈𝑎𝑎, 𝑏𝑏〉5, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉2, 〈𝑎𝑎, 𝑐𝑐, 𝑏𝑏〉1, 〈𝑎𝑎,𝑑𝑑, 𝑏𝑏〉1, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉1 ]     (1) 

 

The numbers above the traces indicate how many times the 

trace has occurred (see Equation 1). The event log L1 contains 

40 traces, three of which are infrequent and cause noise in the 

event log (rare behaviour that does not represent typical 

process behaviour). 

 
B. Basic Relations 

 
We must analyse basic relations (Yulion et al., 2022) if we are 

to discover a process model based on the event log. Within 

the scope of this paper, we use three types of basic relations. 

In (Yulion et al., 2022), the authors provide a standard 

description of the basic relations (see Equation 2). 

 

Definition 2 (Basic relations)   

Let 𝐿𝐿 be an event log over 𝑇𝑇,  

 𝑎𝑎, 𝑏𝑏 ∈T:   

𝑎𝑎 >𝜔𝜔 𝑏𝑏, if there is a trace 𝜎𝜎 = 𝑡𝑡1𝑡𝑡2𝑡𝑡3 … 𝑡𝑡𝑛𝑛 and  𝑖𝑖 ∈

{1, … ,𝑛𝑛 − 1} 

such that 𝜎𝜎 ∈ 𝐿𝐿 and 𝑡𝑡𝑖𝑖 = 𝑎𝑎  and 𝑡𝑡𝑖𝑖+1 = 𝑏𝑏, 

𝑎𝑎 >>𝜔𝜔 𝑏𝑏, if there is a trace 𝜎𝜎 = 𝑡𝑡1𝑡𝑡2𝑡𝑡3 … 𝑡𝑡𝑛𝑛 and  𝑖𝑖 ∈

{1, … ,𝑛𝑛 − 2} 

such that 𝜎𝜎 ∈ 𝐿𝐿  and 𝑡𝑡𝑖𝑖 = 𝑎𝑎  and 𝑡𝑡𝑖𝑖+1 = 𝑏𝑏  , 𝑡𝑡𝑖𝑖+2 = 𝑎𝑎  

and 𝑎𝑎 ≠ 𝑏𝑏, 

𝑎𝑎 >>>𝜔𝜔 𝑏𝑏, if there is a trace 𝜎𝜎 = 𝑡𝑡1𝑡𝑡2𝑡𝑡3 … 𝑡𝑡𝑛𝑛 and 𝑖𝑖 < 𝑗𝑗 

and  𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛}  such that 𝜎𝜎 ∈ 𝐿𝐿  and 𝑡𝑡𝑖𝑖 = 𝑎𝑎 

and 𝑡𝑡𝑖𝑖 = 𝑏𝑏 (until next appearance of a or b)  (2) 

 
The first relation >𝜔𝜔  specifies which activities occur in 

chronological order, i.e., one activity immediately follows the 

other. The second relation >>𝜔𝜔 describes activities that take 

place in two-length loops. The final relation >>>𝜔𝜔 refers to 

direct or indirect successors. 

 
C. Dependency Measures 

 
Since the frequency of successors does not indicate the 

likelihood of succession, we must define dependency 

measures (Yulion et al., 2022). As a result, the dependency 

relationship between the two activities (notation a ⇒w b) can 

be stated. There are three types of measures once again. In 

(Yulion et al., 2022), the authors provide a standard 

description of the dependency measures (see Equation 3). 

The dependency measures are implemented in three 

matrices by Class DependencyMatrix. The DirectDe-

pendency'Matrix stores the first dependency measure. The 

second dependency measure is stored in the 

LILDependencyMatrix, which is a one-dimensional matrix, 

and the third dependency measure is stored in the 

LILDependencyMatrix. 

 
Definition 3 (Dependency measures) 

Let 𝐿𝐿 be an event log over 𝑇𝑇, 𝑎𝑎, 𝑏𝑏 ∈ 𝑇𝑇,  

|𝑎𝑎 >𝜔𝜔 𝑏𝑏| is the number of times 𝑎𝑎 >𝜔𝜔 𝑏𝑏 occurs in 𝐿𝐿, 

|𝑎𝑎 >>𝜔𝜔 𝑏𝑏| is the number of times 𝑎𝑎 >>𝜔𝜔 𝑏𝑏 occurs in 𝐿𝐿. 

𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 = �
|𝑎𝑎 >𝜔𝜔 𝑏𝑏| − |𝑏𝑏 >𝜔𝜔 𝑎𝑎|

|𝑎𝑎 >𝜔𝜔 𝑏𝑏| + |𝑏𝑏 >𝜔𝜔 𝑎𝑎| + 1�   if  (𝑎𝑎 ≠ 𝑏𝑏) 

𝑎𝑎 ⇒𝜔𝜔 𝑎𝑎 = �
|𝑎𝑎 >𝜔𝜔 𝑎𝑎|

|𝑎𝑎 >𝜔𝜔 𝑎𝑎| + 1�   if  (𝑎𝑎 = 𝑏𝑏) 

𝑎𝑎 ⇒𝜔𝜔
2 𝑏𝑏 = � |𝑎𝑎>>𝜔𝜔𝑏𝑏|−|𝑏𝑏>>𝜔𝜔𝑎𝑎|

|𝑎𝑎>>𝜔𝜔𝑏𝑏|+|𝑏𝑏>>𝜔𝜔𝑎𝑎|+1
�                                         (3) 

 
The dependency measure's value is always between -1 and 

1. The higher the value, the stronger the dependency link 

between activities. These relationships can be represented 

using the dependency graph. In (Yulion et al., 2022), the 

authors provide a standard description of the dependency 

graph (see Equation 4). 

 
D. Dependency Graph 

 
Definition 4 (Causal Net) 

Let L be an event log over T,  

𝜎𝜎𝑎𝑎 the absolute dependency threshold (90%),  

𝜎𝜎𝐿𝐿1𝐿𝐿 the length one loop threshold (90%), 

𝜎𝜎𝐿𝐿2𝐿𝐿 the length two loop threshold (90%),  

𝜎𝜎𝑟𝑟 the relative to the performed threshold (5%),  

act the all-tasks-connected heuristic.  

The dependency graph DG is defined as follows:  

𝐴𝐴 = {𝑡𝑡|∃𝜎𝜎∈𝐿𝐿[𝑡𝑡 ∈ 𝜎𝜎]} (The set of tasks appearing in the log), 

𝐶𝐶1 = {(𝑎𝑎,𝑎𝑎) ∈ 𝐴𝐴 × 𝐴𝐴|(𝑎𝑎 ⇒𝜔𝜔 𝑎𝑎 ≥ 𝜎𝜎𝐿𝐿1𝐿𝐿)} (Length-one loops), 
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𝐶𝐶2 = {(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴|(𝑎𝑎,𝑎𝑎) ∉ 𝐶𝐶1 ∧ (𝑏𝑏, 𝑏𝑏) ∉ 𝐶𝐶1 ∧ a ⇒𝜔𝜔
2 𝑏𝑏 ≥ 𝜎𝜎𝐿𝐿2𝐿𝐿} 

(Length-two loops), 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = �(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ b ≠ end ∧ a ≠ b ∧

 ∀𝑦𝑦∈𝐴𝐴[𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥ 𝑎𝑎 ⇒𝜔𝜔 𝑦𝑦]� (Each task’s strongest follower), 

𝐶𝐶𝑖𝑖𝑖𝑖 = �(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ b ≠ start ∧ a ≠ b ∧

 ∀𝑦𝑦∈𝐴𝐴[𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥ 𝑦𝑦 ⇒𝜔𝜔 𝑏𝑏]� (Each task’s strongest cause), 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′ = �(𝑎𝑎, 𝑥𝑥) ∈ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ a ≠ x < 𝜎𝜎𝜔𝜔 ∧  ∃(𝑏𝑏,𝑦𝑦)∈𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜[(𝑎𝑎, 𝑏𝑏) ∈

𝐶𝐶2 ∧ b ⇒𝜔𝜔 𝑦𝑦 − 𝑎𝑎 ⇒𝜔𝜔 𝑥𝑥 > 𝜎𝜎𝑟𝑟]� (non-necessary dependencies), 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′  (Only one dependent task is necessary for 

a length-two loop), 

𝐶𝐶𝑖𝑖𝑖𝑖′ = �(𝑎𝑎, 𝑥𝑥) ∈ 𝐶𝐶𝑖𝑖𝑖𝑖|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ a ⇒𝜔𝜔 x < 𝜎𝜎𝑎𝑎 ∧  ∃(𝑏𝑏,𝑦𝑦)∈𝐶𝐶𝑖𝑖𝑖𝑖[(𝑥𝑥,𝑦𝑦) ∈ 𝐶𝐶2 ∧

b ⇒𝜔𝜔 𝑦𝑦 − 𝑎𝑎 ⇒𝜔𝜔 𝑥𝑥 > 𝜎𝜎𝑟𝑟]� (non-necessary dependencies), 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖′  (Only one cause task is necessary for a 

length-two loop), 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′′ = �(𝑎𝑎, 𝑏𝑏)  ∈ 𝐴𝐴 × 𝐴𝐴| �𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 
≥  𝜎𝜎𝑎𝑎  
∧ ∃(𝑎𝑎,𝑦𝑦)∈𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜  [𝑎𝑎 ⇒𝜔𝜔 𝑦𝑦 − 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≤ 𝜎𝜎𝑟𝑟]�
∨ (¬𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥  𝜎𝜎𝑎𝑎 )� 

𝐶𝐶𝑖𝑖𝑖𝑖′′ = �(𝑎𝑎, 𝑏𝑏)  ∈ 𝐴𝐴 × 𝐴𝐴| �𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 
≥  𝜎𝜎𝑎𝑎  ∧ ∃(𝑦𝑦,𝑏𝑏)∈𝐶𝐶𝑖𝑖𝑖𝑖  [𝑦𝑦 ⇒𝜔𝜔 𝑏𝑏 − 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≤ 𝜎𝜎𝑟𝑟]�
∨ (¬𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥  𝜎𝜎𝑎𝑎 )� 

𝐷𝐷𝐷𝐷 = 𝐶𝐶1 ∪ 𝐶𝐶2 ∪ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′′ ∪ 𝐶𝐶𝑖𝑖𝑖𝑖′′                           (4) 

 
E. Causal Net 

 
The causal net is a graph in which nodes represent activities 

and arcs represent causal relationships. Each node has its 

own set of input and output bindings. Binding is a collection 

of activities in the AND relationship. If an activity has 

multiple bindings pointing in the same direction, they are in 

an XOR relationship. The causal net has distinct beginning 

and ending activities. They also keep track of how many times 

each activity and binding were visited during the log's replay. 

In (Van der Aalst et al., 2011), the authors provide a standard 

description of the causal Net (see Equation 5). 

 
Definition 5 (Causal Net) 

Let L be an event log over T, 

A causal net (C-net) is a tuple C = (A, ai, a0, D, I, O)           (5) 

where: 

 𝐴𝐴 ⊆ 𝑇𝑇  is finite set of activities, 

 𝑎𝑎𝑖𝑖𝜖𝜖 𝐴𝐴  is start activity, 

 𝑎𝑎0𝜖𝜖 𝐴𝐴 is end activity, 

 𝐷𝐷 ⊆ 𝐴𝐴  x A is dependency relation (see equation 4), 

 𝐴𝐴𝐴𝐴 = {𝑋𝑋 ⊆ 𝑃𝑃(𝐴𝐴) | X = {∅} ∨ ∅ ∉ 𝑋𝑋}2, 

 𝐼𝐼 𝜖𝜖 𝐴𝐴 ⟶ 𝐴𝐴𝐴𝐴 defines the set of input bindings per activity, 

𝑂𝑂 𝜖𝜖 𝐴𝐴 ⟶ 𝐴𝐴𝐴𝐴 defines the set of output bindings per activity. 

 
F. Petri Net 

 
Petri Nets (2015) is a graphical language that is used to 

illustrate a process. A Petri Net, in particular, is a bipartite 

network with two types of nodes: transitions and places. In 

(Raffety et al., 2022), the authors provide a standard 

description of the Petri Net (see Equation 6). 

 
Definition 6 (Petri Net) 

A Petri net is a triplet 𝑁𝑁 = (𝑃𝑃,𝑇𝑇,𝐹𝐹) (6)  

where: 

P is a finite set of places,  

T is a finite set of transitions such that 𝑃𝑃 ∩ 𝑇𝑇 = ∅ ∧ 𝐹𝐹 ⊆

(𝑃𝑃 × 𝑇𝑇) ∪ (𝑇𝑇 × 𝑃𝑃) is a set of directed arcs (flow relation). 

 
A marked Petri net is a pair (𝑁𝑁,𝑀𝑀), where 𝑁𝑁 = (𝑃𝑃,𝑇𝑇,𝐹𝐹) is a 

Petri net, and where 𝑀𝑀 ∈ 𝛽𝛽(𝑃𝑃)  is a multi-set over P defining 

the marking of the net. The set of all marked Petri nets is 

expressed N. 

 
III. HEURISTICS MINER 

 
The Heuristic Miner (HM) algorithm was developed by 

Weijters, Ribeiro in (Yulion et al., 2022). It employs a 

heuristic approach to resolve problems encountered by the 

algorithm. The general idea behind this algorithm aims at 

recognising the sets of relations in the event logs and then 

generate a process model based on those relations. The 

algorithm differs from the heuristic miner in that the latter 

uses statistical measures to determine the relationships 
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between activities. The algorithm is split into three steps. It 

first generates a dependency graph by counting all direct  

successions in the logs (the frequencies of the successions are 

then stored in a matrix). It then computes the dependency 

rate between each activity in order to retain only those with a 

significant causal relationship. The discovered causality 

graph (Van der Aalst et al., 2011) will be developed after a 

dependency rate and succession frequency threshold is set. 

The second step is to use a heuristic approach to identify 

divergences and synchronisations. Finally, if necessary, the 

causality graph may be transformed into a Petri net. 

The Heuristic miner is a commonly used mining algorithm 

that can deal with noise and can be used to express the 

primary behaviour registered in an event log (Silva & Mira Da 

Silva, 2022). The process model is discovered by the 

Heuristic miner, which describes the control-flow perspective 

of the process captured in the event log. When constructing a 

process model, this algorithm considers the frequencies and 

sequences of the events. This enables us to exclude unusual 

behaviour from the discovered model. Benchmark studies 

have demonstrated its worth, displaying the ability to 

discover high-quality models (Yulion et al., 2022). The 

algorithm's input is an event log with one initial and one final 

activity. This can be accomplished by preprocessing the event 

log. 

The establishment of the dependency graph is the starting 

point for the Heuristic miner. The first step is to construct a 

matrix of basic relationships. 

For example, Table 1 presents the number of times the basic 

relations occurred in the event log 𝐿𝐿1 (see equation 7). 

 

(𝐿𝐿1 = �
〈𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑏𝑏〉10, 〈𝑎𝑎,𝑑𝑑, 𝑐𝑐, 𝑏𝑏〉10, 〈𝑎𝑎, 𝑒𝑒, 𝑏𝑏〉10, 〈𝑎𝑎, 𝑏𝑏〉5, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉2,

〈𝑎𝑎, 𝑐𝑐, 𝑏𝑏〉1, 〈𝑎𝑎,𝑑𝑑,𝑏𝑏〉1, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉1 �) 

(7) 

 
The relation a >w b is on the left, and the relation a >>>w b 

is on the right side. The matrix of relation a >>w b is not 

shown, because it contains only zeros (L1 does not contain the 

length of two loops). As an example, |a >𝜔𝜔  c| = 11, i.e., c is 

followed by 11 times in the event log 𝐿𝐿1  (10 times in 

〈𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑏𝑏〉10 and once in 〈𝑎𝑎, 𝑐𝑐, 𝑏𝑏〉1).  

 

Table 1. Matrices of basic relations. 

 a c d b e   a c d b e 

a 0 11 11 11 5  a 0 21 21 40 13 

c 0 0 10 11 0  c 0 0 10 21 0 

d 0 10 0 11 0  d 0 0 0 21 0 

b 0 0 0 0 0  b 0 0 0 0 0 

e 0 0 0 13 4  e 0 0 0 0 0 

 

The next step is to compute the activity dependency 

measures, as defined in section 2.3. The dependency 

measures are once again stored as matrices. We can omit the 

dependency measure a⇒w
2 b.  

Table 2 shows the dependency measures. The values in the 

lower triangular part of the matrix are the inverses of the 

values in the upper triangular part (𝑎𝑎 ⇒𝜔𝜔c and 𝑐𝑐 ⇒𝜔𝜔 𝑎𝑎). As a 

result, we can skip the lower triangle computation by simply 

using the negative value of the upper triangle. 

 
Table 2. Dependency measures. 

 

The next objective is to make the dependency graph. 

Dependency measurements can be used in two ways: 

essentially (without all-tasks-connected heuristics) and in 

conjunction with all-tasks-joined heuristics. When we use the 

direct approach, we only observe the length-one loop, length-

two loops, and absolute dependency thresholds. The default 

value for these thresholds is usually 0.9. These thresholds 

indicate that we accept dependency relationships between 

activities with dependency measures greater than or equal to 

the threshold. If we use the all-tasks-connected approach, we 

must first create a model of the best candidates (the strongest 

input and output relations). Then, we handle the other 

 a c d b e 

a 0 92% 92% 83% 93% 

c -92% 0 0 92% 0 

d -92% 0 0 92% 0 

b -83% -92% -92% 0 -93% 

e -93% 0 0 93% 80% 
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relations using the relative to the best threshold. We also 

approve activities with a dependency measure greater than 

the absolute dependency threshold and a dependency 

measure close to the best candidate. The dependency graph is 

created in 12 steps. In steps 4 through 9, the all-tasks-

connected heuristic is used. In steps 10 through 12, the 

process model is expanded with additional reliable arcs 

(Yulion et al., 2022). 

Thus, the DG is generated using the default settings and all-

tasks-connected heuristic from Table 2. By changing the 

settings, we can get different dependency graphs. For 

example, if we use a length-one loop threshold of 0.7, we can 

get specific representation of the DG (see Figure 2). The 

dependency graph also supports a self-loop on activity e. You 

may notice that activities a and b are missing one set of 

activities. This is due to the fact that a is the initial activity and 

b is the final activity. 

 
Figure 2. Dependency Graph illustration. 

 
 

Mining long-distance dependencies is optional and is 

determined by the settings. It identifies relations that have 

not yet been included in the dependency graph. 

A new frequency-based metric has been defined to address 

this issue. A long-distance dependency measure considers 

direct or indirect successors. The fundamental concept is to 

detect pairs of tasks with comparable frequency, where the 

second activity follows the first either directly or indirectly. 

The formal definition of the long dependency measure is cited 

in (Yulion et al., 2022). 

To obtain the long-distance dependency measures, we must 

apply this operation (see equation 8): 

 

𝑎𝑎 ⟹𝑤𝑤
1 𝑏𝑏 = �2∗|𝑎𝑎>>>𝜔𝜔𝑏𝑏|

|𝑎𝑎|+|𝑏𝑏|+1
− 𝑎𝑎𝑎𝑎𝑎𝑎(|𝑎𝑎|−|𝑏𝑏|)

|𝑎𝑎|+|𝑏𝑏|+1
�   (8) 

 
where 𝐿𝐿 is an event log over 𝑇𝑇, 𝑎𝑎, 𝑏𝑏 ∈ 𝑇𝑇, 

|𝑎𝑎 >>>𝜔𝜔 𝑏𝑏| is the number of times 𝑎𝑎 >>>𝜔𝜔 𝑏𝑏 b occurs in 𝐿𝐿,  

|𝑎𝑎| is the number of times 𝑎𝑎 occurs in 𝐿𝐿. 

|𝑏𝑏| is the number of times 𝑎𝑎 occurs in 𝐿𝐿. 

The final step is to transform the dependency graph into a 

causal net. To accomplish this, we must mine input and 

output bindings for each activity. We replay the event log and 

count each unique pattern after this activity to build the 

output binding of the activity. We stop counting when we find 

the next occurrence of the activity under consideration, and 

we only count those activities where the activity under 

consideration is the pattern's nearest input. The input 

bindings are discovered in the same manner, but in the 

opposite direction. 

The causal net is the result of the Heuristic miner. For some 

analyses, such as determining the conformance between an 

event log and the model, we must transform the causal net to 

the Petri net. In (Silva & Mira Da Silva, 2022), the authors 

describe this conversion. However, such a conversion is 

problematic because it may result in unsound Petri nets, and 

Petri nets may have a firing sequence that cannot be extended 

to become a legitimate firing sequence. To produce a simpler 

model, we skip some unnecessary invisible transitions.  
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ProM software employs a similar approach to mine. The 

ProM2 conversion, on the other hand, does not consider long-

distance dependencies. As a result, the model may allow 

traces. In this context, our implementation solves this 

problem by allocating additional locations for each long-

distance dependency. 

 
IV. IMPLEMENTATION 

 
The purpose of this paper was to describe an advanced 

algorithm for process modelling, known as the heuristics' 

miner. It begins with an overview of process mining. It then 

goes on to explain to the reader the models that are used and 

the definitions that are required. Following that: 

 
A. Structure 

 
The PMLib library was created with extensibility, portability, 

and maintainability as primary goals. As a result, the library 

uses very few external, non-standard libraries, with Deedle 

(Phillippe, 2020) being the only one used at the time of 

writing this paper, a library used for importing data from CSV 

files and storing data in data frames. PMLib is built with .NET 

Core 3, a Microsoft ecosystem open-source, cross-platform 

development framework. As described in the .NET Core 

overview (Microsoft, 2020), .NET Core is a versatile 

framework for building modern applications. 

Deedle, an exploratory data library for .NET, as described 

in the documentation provided by Blue Mountain Capital 

(2020), is a valuable tool for data analysis.  

 

 

 

2 https://www.promtools.org/doku.php 

B. Structure 
 
The library's design is hierarchical, albeit relatively flat, with 

the goal of separating functionality into directories and 

subdirectories so that a potential user only needs to import 

the parts of the library that are required. A hierarchical 

structure with few levels fits process mining techniques 

rather well because the scientific field is divided into three 

main compartments, the most commonly used of which are 

play-in and replay (see Figure 3), and these compartments 

are mostly made up of relatively standalone procedures. The 

source code for this project is available on the GitHub 3 

platform. There are three directories in the solution. We 

ignored the conformance checking part. We focus only on the 

discovery and the Model directories. Therefore, we conclude 

the following hierarchical directory structure: 

• ProcessM.NET – solution.  

- Discovery / HeuristicMiner 

HeuristicMiner 

DependencyMatrix 

DependencyGraph 

HeuristicMinerSettings 

- Model/ CausalNet 

            CNet 

            CNetUtils (transformation to Petri net) 

• ProcessM.NET-tests - unit tests and necessary resources 

for testing 

• ProcessM.NET-Demo – demonstration 

 

3 https://github.com/lasaris/ProcessM.NET 
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Figure 3. Dependency Graph illustration. 

 

In PMLib (2015), event logs are represented by an 

ImportedEventLog class, which consists of a Deedle data 

frame and three string properties – CaseId, Activity, and 

Timestamp – to highlight the case, activity, and timestamp 

columns in the data frame. Initially, the string properties are 

set to null. 

Only a data frame is used to create an instance of the 

ImportedEventLog class. The class then includes methods for 

configuring the three string properties, two of which – CaseId 

and Activity – are required before the event log can be 

processed into a workflow log. The Timestamp property is not 

required for creating a workflowlog because the order of 

events in the event log will be used to order activities in cases. 

However, some process mining techniques, such as 

bottleneck mining, require the Timestamp property to be 

defined in order to function properly. 

The subdirectory contains two classes for modelling 

workflow traces: WorkflowTrace and 

TimestampedWorkflowTrace. For the most part, the classes 

are similar in that they both serve as simple containers for a 

string property Case, indicating the case under which the 

activities in the WorkFlowTrace were grouped, and a 

collection of strings, Activities, containing the activities of 

events belonging to the specified case. The classes then 

provide methods for inserting activities into the trace, and 

both are created with only a Case string as an input. The 

ordering of the activities is what distinguishes the two classes. 

WorkflowTrace stores the activities in the same order that 

they were added to the trace, using a list of strings as a 

container. 

The relations are implemented in the class SucessorMatrix. 

There are three matrices in the class. The DirectMatrix stores 

relational information >𝜔𝜔 . The L2LMatrix stores relational 

information >>𝜔𝜔 , while the LongDistanceMatrix stores 

relational information >>>𝜔𝜔 . In addition, the Activity 

Occurrences class contains an array of activity occurrences. 

The dependency graph is implemented in the classes 

HeuristicMinerSettings and DependencyGraph.  

The HeuristicMinerSettings folder also includes the default 

values for these settings. Because int comparison is faster 

than string comparison, activities in the DependencyGraph 

are stored as int. As a result, the class provides two types of 

mapping, such as int to string and vice versa. There is a 

distinct StartActivity and EndActivity. InputActivities and 

OutputActivities, which are lists of hash sets, are included in 

the class (accessible by activity ID). Finally, 

LongDependencies is a hash set of tuples that stores long-

distance dependencies. 

The implementation of causal networks is divided into three 

classes: CNet, CPlace, and Binding. The Binding class keeps 

track of a collection of Activities and their Frequency. The 

CPlace class holds nodes that contain information about the 

activity Id and frequency. The causal net is represented by the 

CNet class. Because activities are once again stored as 

integers, there are two mapping functions. Nodes are 

represented by a list of CPlaces that are stored in Activities. It 

has a distinct StartActivity and a distinct EndAcitivity. 
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Furthermore, the dictionaries InputBindings and 

OutputBindings are supplemented by the LongDistance 

dictionary for long-term dependent activities. 

The Petri net subdirectory contains a representation of a 

Petri net and its components– places, transitions, and arcs – 

for the PMLib library's needs. Because PMLib is a process 

mining library, the term "Petri net" is understood to be 

synonymous with "workflow net". It should also be noted that 

the Petri net model lacks firing functionality, as only the static 

part of the model is required for a significant portion of the 

library. The firing functionality is then implemented as an 

overlay to the static model of a Petri net in directories 

containing classes that require such behaviour to function 

properly. 

The static part of a Petri net is represented by three classes 

in the Model directory: Place, Transition, and PetriNet, which 

implement three corresponding interfaces: IPlace, 

ITransition, and IPetriNet. 

 
C. Import and Export 

 
The PMLib library also includes Petri net import and export 

functionality. The Import directory contains two classes: 

CSVImport and PNMLImport. The Export directory contains 

two classes: DOTExport and PNMLExport. CSVImport is a 

static class with a single method – MakeDataFrame. 

The method takes a path to a.csv file and several optional 

arguments before passing the input to Frame. 

Deedle library's ReadCsv method generates a data frame 

containing the imported data. The method then creates and 

returns an instance of the ImportedEventLog class using the 

imported data frame. 

PNMLImport is a static class with one public method: 

Deserialise. The method expects a string containing the path 

to an.xml file containing a Petri net representation in the 

standardised Petri Net Markup Language (PNML, 2015). If 

such a Petri net exists in the file, the method parses the XML 

and returns a Petri net. 

DOTExport is a static class with one public method, 

Serialise. As input, the method expects an instance of a class 

derived from the IPetriNet interface, as well as an optional 

string value of indentation sequence. The method then 

generates a representation of the given Petri net in a dot 

language (2020), which can be visualised using dot-

compliant tools like Graphviz (2022). The dot representation 

of the given Petri net is then saved as a.dot file, and the 

method returns the full file name. 

PNMLExport is a static class with one public method: 

Serialise. As an input, the method expects an instance of a 

class derived from the IPetriNet interface. Following that, the 

method generates a PNML-compliant XML representation of 

the given Petri net. Then, the method saves the XML 

representation of the Petri net into a.xml file and returns the 

full file name. 

 
V. CONCLUSION 

 
The purpose of this paper was to describe an advanced 

algorithm for process modelling, known as the heuristics' 

miner. It begins with an overview of process mining. It then 

goes on to explain to the reader the models that are used and 

the definitions that are required. Following that, it explains 

how the Heuristic Miner works. 

As the only one currently available, the library presented in 

this paper is written in the C#.NET Core 6 framework. It is 

designed to be simple to understand, even for developers who 

are unfamiliar with process mining. The implementation has 

been thoroughly documented. It also includes the unit tests 

for the miner algorithm and the heuristics. The GitHub1 

platform is used to access the library. 

The library is a fully functional process mining library that 

is future-extensible (inductive miner algorithm). This paper's 

text may be used as study material for these algorithms. 

In the future, we hope to implement the inductive miner 

algorithm using the Process Mining .NET library. The future 

implementation must include the genetic miner algorithms as 

well as a set of automatic tests to demonstrate the genetic 

miner algorithm's proper functionality. 
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