
*Corresponding author’s e-mail: zineb_lamghari2@um5.ac.ma

ASM Sc. J., 19, 2024

https://doi.org/10.32802/asmscj.2023.1447

Towards the Implementation of Heuristics Miner
in .Net Framework

Z. Lamghari1,2∗

1Department of Computer Science, Faculty of Sciences, Mohammed V University, Rabat, 10000, Morocco

2Laboratory of Sciences, Engineering, and Management (LSEM), High School of Technology (EST), Sidi Mohamed Ben

Abdellah University, Immouzer Road, Fez, 2427, Morocco

Process mining is an interdisciplinary field that bridges the gap between data mining and business

process analysis. It revolves around the core concept of leveraging recorded event logs to automate

the generation, validation, and refinement of process model. A majority of currently accessible

process mining solutions are distributed in form of black box systems - software with no openly

accessible source code - or as libraries for scripting languages like Python or R. In this sense, it is

necessary to design and build an understandable foundation of a process mining library with the

intention of presenting the possibility of incorporating process mining into many programs written

in the language or aiding other programmers interested in the potential of such technologies.

Therefore, this paper describes and demonstrates the usability of an advanced algorithm for process

mining in the .NET platform, namely, the Heuristic miner for process modelling.

Keywords: process mining; process discovery; heuristics miner algorithm; C# library; .NET Core

6

I. INTRODUCTION

Process mining is a scientific discipline that falls between

data mining and business process analysis (Van der Aalst,

2016). The main idea of process mining is to use the execution

BPs event logs that are recorded in the information system to

automatically generate, check and enhance process models.

Moreover, process mining consists of three types, which are

discovery, conformance, and enhancement (Coutinho-

Almeida & Cruz-Correia, 2022). Discovery: An automatic

process modelling methodology that takes event logs as input

and produces a BP model as output. Conformance: compares

the newly discovered process model with the existing process

model. The purpose is to identify bottlenecks and discover

discrepancies. Enhancement: focuses on improving or

extending the existing process model using the information

stored in event logs. In this context, the discovery technique

has always been a major topic in process mining research.

Furthermore, there are several process mining tools. The

majority of currently available process mining solutions are

distributed as black box systems – software with no openly

accessible source code – or as libraries for scripting languages

like Python (Waibel, 2022) or R (Janssenswillen et al., 2019),

which are generally regarded as unsuitable for more complex

software projects.

The objective of this paper, as well as the associated

implementation, is to design and build a solid, easily

extensible, and understandable foundation for a process

mining library in C#, a popular, modern, coherent, and

widely used, primarily object-oriented programming

language, with the intention of not only presenting the

possibility of incorporating process mining into many

programs written in the language or assisting other

programmers interested in the potential of such technology.

This paper, in particular, describes a discovery algorithm

for a library written in the C# programming language and

built in the. NET Core 6 framework. The reader is first

introduced to the fundamentals of process mining. Just after

that, definitions and implementations of commonly used

models are introduced, followed by an explanation of the

https://doi.org/10.32802/asmscj.2023.1447

ASM Science Journal, Volume 19, 2024

2

heuristic miner algorithm. This algorithm is also

demonstrated in the paper. The library is accessible via the

GitHub 1platform.

Upcoming sections of this paper are organised as follows:

Section 2 presents the theoretical background related to our

study field. Section 3 explains the heuristics miner algorithm.

This section will lead us to understand the process mining

library in terms of components and logical links. Section 4

illustrates the implementation of the heuristics’ miner

algorithm in the .NET framework. The conclusion is

mentioned in section 5.

II. THEORETICAL BACKGROUND

In this section, we present terminologies used throughout our

paper. In this sense, we define the following concepts and

notations: Event logs, Basic relations, Dependency measures,

Dependency graph, Causal Net and Petri Net.

For this purpose, this section content will be organised as

follows: Definition 1 (Event logs), Definition 2 (Basic

relations), Definition 3 (Dependency measures), Definition 4

(Dependency graph), Definition 5 (Causal Net) and

Definition 6 (Petri Net).

A. Event Logs

Process Mining typically assumes that BP (Business Process)

execution data are stored as event logs (Van der Aalst, 2016;

Coutinho-Almeida & Cruz-Correia, 2022). An event can be

considered as the starting point of process mining. The event

log structure is illustrated in Figure 1, where the process is

made of either cases or finished process instances. Each case

is composed of a series of occurrences known as a trace.

Depending on the organisation's needs, an event can include

any number of extra properties (timestamps, costs, resources,

etc.). These extra characteristics are critical for tracking BP

improvement. For example, bottlenecks cause can slow down

the process flow.

The event logs notation may depend on the information

system treatment or objectives. However, the main objective

is the quality of these events that can heavily affect the

process model representation and, by necessity the main

business of the organisation. Therefore, event logs should be

treated as first-class.

Figure 1. Process mining overview (El-Gharib & Amyot, 2019).

Definition 1 (Event log).

Let 𝑇𝑇 be a set of activities,

𝜁𝜁 ∈ 𝑇𝑇∗ is an event trace, i.e., sequence of activity identifiers,

L ⊆ 𝑇𝑇∗ is an event log, i.e., a multiset of event traces.

To illustrate the basic concepts used in the following chapters, we use the event log:

1 https://github.com/lasaris/ProcessM.NET

ASM Science Journal, Volume 19, 2024

3

𝐿𝐿1 = [〈𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑏𝑏〉10, 〈𝑎𝑎,𝑑𝑑, 𝑐𝑐,𝑏𝑏〉10 , 〈𝑎𝑎, 𝑒𝑒, 𝑏𝑏〉10, 〈𝑎𝑎, 𝑏𝑏〉5, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉2, 〈𝑎𝑎, 𝑐𝑐, 𝑏𝑏〉1, 〈𝑎𝑎,𝑑𝑑, 𝑏𝑏〉1, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉1] (1)

The numbers above the traces indicate how many times the

trace has occurred (see Equation 1). The event log L1 contains

40 traces, three of which are infrequent and cause noise in the

event log (rare behaviour that does not represent typical

process behaviour).

B. Basic Relations

We must analyse basic relations (Yulion et al., 2022) if we are

to discover a process model based on the event log. Within

the scope of this paper, we use three types of basic relations.

In (Yulion et al., 2022), the authors provide a standard

description of the basic relations (see Equation 2).

Definition 2 (Basic relations)

Let 𝐿𝐿 be an event log over 𝑇𝑇,

 𝑎𝑎, 𝑏𝑏 ∈T:

𝑎𝑎 >𝜔𝜔 𝑏𝑏, if there is a trace 𝜎𝜎 = 𝑡𝑡1𝑡𝑡2𝑡𝑡3 … 𝑡𝑡𝑛𝑛 and 𝑖𝑖 ∈

{1, … ,𝑛𝑛 − 1}

such that 𝜎𝜎 ∈ 𝐿𝐿 and 𝑡𝑡𝑖𝑖 = 𝑎𝑎 and 𝑡𝑡𝑖𝑖+1 = 𝑏𝑏,

𝑎𝑎 >>𝜔𝜔 𝑏𝑏, if there is a trace 𝜎𝜎 = 𝑡𝑡1𝑡𝑡2𝑡𝑡3 … 𝑡𝑡𝑛𝑛 and 𝑖𝑖 ∈

{1, … ,𝑛𝑛 − 2}

such that 𝜎𝜎 ∈ 𝐿𝐿 and 𝑡𝑡𝑖𝑖 = 𝑎𝑎 and 𝑡𝑡𝑖𝑖+1 = 𝑏𝑏 , 𝑡𝑡𝑖𝑖+2 = 𝑎𝑎

and 𝑎𝑎 ≠ 𝑏𝑏,

𝑎𝑎 >>>𝜔𝜔 𝑏𝑏, if there is a trace 𝜎𝜎 = 𝑡𝑡1𝑡𝑡2𝑡𝑡3 … 𝑡𝑡𝑛𝑛 and 𝑖𝑖 < 𝑗𝑗

and 𝑖𝑖, 𝑗𝑗 ∈ {1, … ,𝑛𝑛} such that 𝜎𝜎 ∈ 𝐿𝐿 and 𝑡𝑡𝑖𝑖 = 𝑎𝑎

and 𝑡𝑡𝑖𝑖 = 𝑏𝑏 (until next appearance of a or b) (2)

The first relation >𝜔𝜔 specifies which activities occur in

chronological order, i.e., one activity immediately follows the

other. The second relation >>𝜔𝜔 describes activities that take

place in two-length loops. The final relation >>>𝜔𝜔 refers to

direct or indirect successors.

C. Dependency Measures

Since the frequency of successors does not indicate the

likelihood of succession, we must define dependency

measures (Yulion et al., 2022). As a result, the dependency

relationship between the two activities (notation a ⇒w b) can

be stated. There are three types of measures once again. In

(Yulion et al., 2022), the authors provide a standard

description of the dependency measures (see Equation 3).

The dependency measures are implemented in three

matrices by Class DependencyMatrix. The DirectDe-

pendency'Matrix stores the first dependency measure. The

second dependency measure is stored in the

LILDependencyMatrix, which is a one-dimensional matrix,

and the third dependency measure is stored in the

LILDependencyMatrix.

Definition 3 (Dependency measures)

Let 𝐿𝐿 be an event log over 𝑇𝑇, 𝑎𝑎, 𝑏𝑏 ∈ 𝑇𝑇,

|𝑎𝑎 >𝜔𝜔 𝑏𝑏| is the number of times 𝑎𝑎 >𝜔𝜔 𝑏𝑏 occurs in 𝐿𝐿,

|𝑎𝑎 >>𝜔𝜔 𝑏𝑏| is the number of times 𝑎𝑎 >>𝜔𝜔 𝑏𝑏 occurs in 𝐿𝐿.

𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 = �
|𝑎𝑎 >𝜔𝜔 𝑏𝑏| − |𝑏𝑏 >𝜔𝜔 𝑎𝑎|

|𝑎𝑎 >𝜔𝜔 𝑏𝑏| + |𝑏𝑏 >𝜔𝜔 𝑎𝑎| + 1� if (𝑎𝑎 ≠ 𝑏𝑏)

𝑎𝑎 ⇒𝜔𝜔 𝑎𝑎 = �
|𝑎𝑎 >𝜔𝜔 𝑎𝑎|

|𝑎𝑎 >𝜔𝜔 𝑎𝑎| + 1� if (𝑎𝑎 = 𝑏𝑏)

𝑎𝑎 ⇒𝜔𝜔
2 𝑏𝑏 = � |𝑎𝑎>>𝜔𝜔𝑏𝑏|−|𝑏𝑏>>𝜔𝜔𝑎𝑎|

|𝑎𝑎>>𝜔𝜔𝑏𝑏|+|𝑏𝑏>>𝜔𝜔𝑎𝑎|+1
� (3)

The dependency measure's value is always between -1 and

1. The higher the value, the stronger the dependency link

between activities. These relationships can be represented

using the dependency graph. In (Yulion et al., 2022), the

authors provide a standard description of the dependency

graph (see Equation 4).

D. Dependency Graph

Definition 4 (Causal Net)

Let L be an event log over T,

𝜎𝜎𝑎𝑎 the absolute dependency threshold (90%),

𝜎𝜎𝐿𝐿1𝐿𝐿 the length one loop threshold (90%),

𝜎𝜎𝐿𝐿2𝐿𝐿 the length two loop threshold (90%),

𝜎𝜎𝑟𝑟 the relative to the performed threshold (5%),

act the all-tasks-connected heuristic.

The dependency graph DG is defined as follows:

𝐴𝐴 = {𝑡𝑡|∃𝜎𝜎∈𝐿𝐿[𝑡𝑡 ∈ 𝜎𝜎]} (The set of tasks appearing in the log),

𝐶𝐶1 = {(𝑎𝑎,𝑎𝑎) ∈ 𝐴𝐴 × 𝐴𝐴|(𝑎𝑎 ⇒𝜔𝜔 𝑎𝑎 ≥ 𝜎𝜎𝐿𝐿1𝐿𝐿)} (Length-one loops),

ASM Science Journal, Volume 19, 2024

4

𝐶𝐶2 = {(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴|(𝑎𝑎,𝑎𝑎) ∉ 𝐶𝐶1 ∧ (𝑏𝑏, 𝑏𝑏) ∉ 𝐶𝐶1 ∧ a ⇒𝜔𝜔
2 𝑏𝑏 ≥ 𝜎𝜎𝐿𝐿2𝐿𝐿}

(Length-two loops),

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = �(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ b ≠ end ∧ a ≠ b ∧

 ∀𝑦𝑦∈𝐴𝐴[𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥ 𝑎𝑎 ⇒𝜔𝜔 𝑦𝑦]� (Each task’s strongest follower),

𝐶𝐶𝑖𝑖𝑖𝑖 = �(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ b ≠ start ∧ a ≠ b ∧

 ∀𝑦𝑦∈𝐴𝐴[𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥ 𝑦𝑦 ⇒𝜔𝜔 𝑏𝑏]� (Each task’s strongest cause),

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′ = �(𝑎𝑎, 𝑥𝑥) ∈ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ a ≠ x < 𝜎𝜎𝜔𝜔 ∧ ∃(𝑏𝑏,𝑦𝑦)∈𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜[(𝑎𝑎, 𝑏𝑏) ∈

𝐶𝐶2 ∧ b ⇒𝜔𝜔 𝑦𝑦 − 𝑎𝑎 ⇒𝜔𝜔 𝑥𝑥 > 𝜎𝜎𝑟𝑟]� (non-necessary dependencies),

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′ (Only one dependent task is necessary for

a length-two loop),

𝐶𝐶𝑖𝑖𝑖𝑖′ = �(𝑎𝑎, 𝑥𝑥) ∈ 𝐶𝐶𝑖𝑖𝑖𝑖|𝑎𝑎𝑎𝑎𝑎𝑎 ∧ a ⇒𝜔𝜔 x < 𝜎𝜎𝑎𝑎 ∧ ∃(𝑏𝑏,𝑦𝑦)∈𝐶𝐶𝑖𝑖𝑖𝑖[(𝑥𝑥,𝑦𝑦) ∈ 𝐶𝐶2 ∧

b ⇒𝜔𝜔 𝑦𝑦 − 𝑎𝑎 ⇒𝜔𝜔 𝑥𝑥 > 𝜎𝜎𝑟𝑟]� (non-necessary dependencies),

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖′ (Only one cause task is necessary for a

length-two loop),

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′′ = �(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴| �𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏
≥ 𝜎𝜎𝑎𝑎
∧ ∃(𝑎𝑎,𝑦𝑦)∈𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 [𝑎𝑎 ⇒𝜔𝜔 𝑦𝑦 − 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≤ 𝜎𝜎𝑟𝑟]�
∨ (¬𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥ 𝜎𝜎𝑎𝑎)�

𝐶𝐶𝑖𝑖𝑖𝑖′′ = �(𝑎𝑎, 𝑏𝑏) ∈ 𝐴𝐴 × 𝐴𝐴| �𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏
≥ 𝜎𝜎𝑎𝑎 ∧ ∃(𝑦𝑦,𝑏𝑏)∈𝐶𝐶𝑖𝑖𝑖𝑖 [𝑦𝑦 ⇒𝜔𝜔 𝑏𝑏 − 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≤ 𝜎𝜎𝑟𝑟]�
∨ (¬𝑎𝑎𝑎𝑎𝑎𝑎 ∧ 𝑎𝑎 ⇒𝜔𝜔 𝑏𝑏 ≥ 𝜎𝜎𝑎𝑎)�

𝐷𝐷𝐷𝐷 = 𝐶𝐶1 ∪ 𝐶𝐶2 ∪ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′′ ∪ 𝐶𝐶𝑖𝑖𝑖𝑖′′ (4)

E. Causal Net

The causal net is a graph in which nodes represent activities

and arcs represent causal relationships. Each node has its

own set of input and output bindings. Binding is a collection

of activities in the AND relationship. If an activity has

multiple bindings pointing in the same direction, they are in

an XOR relationship. The causal net has distinct beginning

and ending activities. They also keep track of how many times

each activity and binding were visited during the log's replay.

In (Van der Aalst et al., 2011), the authors provide a standard

description of the causal Net (see Equation 5).

Definition 5 (Causal Net)

Let L be an event log over T,

A causal net (C-net) is a tuple C = (A, ai, a0, D, I, O) (5)

where:

 𝐴𝐴 ⊆ 𝑇𝑇 is finite set of activities,

 𝑎𝑎𝑖𝑖𝜖𝜖 𝐴𝐴 is start activity,

 𝑎𝑎0𝜖𝜖 𝐴𝐴 is end activity,

 𝐷𝐷 ⊆ 𝐴𝐴 x A is dependency relation (see equation 4),

 𝐴𝐴𝐴𝐴 = {𝑋𝑋 ⊆ 𝑃𝑃(𝐴𝐴) | X = {∅} ∨ ∅ ∉ 𝑋𝑋}2,

 𝐼𝐼 𝜖𝜖 𝐴𝐴 ⟶ 𝐴𝐴𝐴𝐴 defines the set of input bindings per activity,

𝑂𝑂 𝜖𝜖 𝐴𝐴 ⟶ 𝐴𝐴𝐴𝐴 defines the set of output bindings per activity.

F. Petri Net

Petri Nets (2015) is a graphical language that is used to

illustrate a process. A Petri Net, in particular, is a bipartite

network with two types of nodes: transitions and places. In

(Raffety et al., 2022), the authors provide a standard

description of the Petri Net (see Equation 6).

Definition 6 (Petri Net)

A Petri net is a triplet 𝑁𝑁 = (𝑃𝑃,𝑇𝑇,𝐹𝐹) (6)

where:

P is a finite set of places,

T is a finite set of transitions such that 𝑃𝑃 ∩ 𝑇𝑇 = ∅ ∧ 𝐹𝐹 ⊆

(𝑃𝑃 × 𝑇𝑇) ∪ (𝑇𝑇 × 𝑃𝑃) is a set of directed arcs (flow relation).

A marked Petri net is a pair (𝑁𝑁,𝑀𝑀), where 𝑁𝑁 = (𝑃𝑃,𝑇𝑇,𝐹𝐹) is a

Petri net, and where 𝑀𝑀 ∈ 𝛽𝛽(𝑃𝑃) is a multi-set over P defining

the marking of the net. The set of all marked Petri nets is

expressed N.

III. HEURISTICS MINER

The Heuristic Miner (HM) algorithm was developed by

Weijters, Ribeiro in (Yulion et al., 2022). It employs a

heuristic approach to resolve problems encountered by the

algorithm. The general idea behind this algorithm aims at

recognising the sets of relations in the event logs and then

generate a process model based on those relations. The

algorithm differs from the heuristic miner in that the latter

uses statistical measures to determine the relationships

ASM Science Journal, Volume 19, 2024

5

between activities. The algorithm is split into three steps. It

first generates a dependency graph by counting all direct

successions in the logs (the frequencies of the successions are

then stored in a matrix). It then computes the dependency

rate between each activity in order to retain only those with a

significant causal relationship. The discovered causality

graph (Van der Aalst et al., 2011) will be developed after a

dependency rate and succession frequency threshold is set.

The second step is to use a heuristic approach to identify

divergences and synchronisations. Finally, if necessary, the

causality graph may be transformed into a Petri net.

The Heuristic miner is a commonly used mining algorithm

that can deal with noise and can be used to express the

primary behaviour registered in an event log (Silva & Mira Da

Silva, 2022). The process model is discovered by the

Heuristic miner, which describes the control-flow perspective

of the process captured in the event log. When constructing a

process model, this algorithm considers the frequencies and

sequences of the events. This enables us to exclude unusual

behaviour from the discovered model. Benchmark studies

have demonstrated its worth, displaying the ability to

discover high-quality models (Yulion et al., 2022). The

algorithm's input is an event log with one initial and one final

activity. This can be accomplished by preprocessing the event

log.

The establishment of the dependency graph is the starting

point for the Heuristic miner. The first step is to construct a

matrix of basic relationships.

For example, Table 1 presents the number of times the basic

relations occurred in the event log 𝐿𝐿1 (see equation 7).

(𝐿𝐿1 = �
〈𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑏𝑏〉10, 〈𝑎𝑎,𝑑𝑑, 𝑐𝑐, 𝑏𝑏〉10, 〈𝑎𝑎, 𝑒𝑒, 𝑏𝑏〉10, 〈𝑎𝑎, 𝑏𝑏〉5, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉2,

〈𝑎𝑎, 𝑐𝑐, 𝑏𝑏〉1, 〈𝑎𝑎,𝑑𝑑,𝑏𝑏〉1, 〈𝑎𝑎, 𝑒𝑒, 𝑒𝑒, 𝑒𝑒, 𝑏𝑏〉1 �)

(7)

The relation a >w b is on the left, and the relation a >>>w b

is on the right side. The matrix of relation a >>w b is not

shown, because it contains only zeros (L1 does not contain the

length of two loops). As an example, |a >𝜔𝜔 c| = 11, i.e., c is

followed by 11 times in the event log 𝐿𝐿1 (10 times in

〈𝑎𝑎, 𝑐𝑐,𝑑𝑑, 𝑏𝑏〉10 and once in 〈𝑎𝑎, 𝑐𝑐, 𝑏𝑏〉1).

Table 1. Matrices of basic relations.

 a c d b e a c d b e

a 0 11 11 11 5 a 0 21 21 40 13

c 0 0 10 11 0 c 0 0 10 21 0

d 0 10 0 11 0 d 0 0 0 21 0

b 0 0 0 0 0 b 0 0 0 0 0

e 0 0 0 13 4 e 0 0 0 0 0

The next step is to compute the activity dependency

measures, as defined in section 2.3. The dependency

measures are once again stored as matrices. We can omit the

dependency measure a⇒w
2 b.

Table 2 shows the dependency measures. The values in the

lower triangular part of the matrix are the inverses of the

values in the upper triangular part (𝑎𝑎 ⇒𝜔𝜔c and 𝑐𝑐 ⇒𝜔𝜔 𝑎𝑎). As a

result, we can skip the lower triangle computation by simply

using the negative value of the upper triangle.

Table 2. Dependency measures.

The next objective is to make the dependency graph.

Dependency measurements can be used in two ways:

essentially (without all-tasks-connected heuristics) and in

conjunction with all-tasks-joined heuristics. When we use the

direct approach, we only observe the length-one loop, length-

two loops, and absolute dependency thresholds. The default

value for these thresholds is usually 0.9. These thresholds

indicate that we accept dependency relationships between

activities with dependency measures greater than or equal to

the threshold. If we use the all-tasks-connected approach, we

must first create a model of the best candidates (the strongest

input and output relations). Then, we handle the other

 a c d b e

a 0 92% 92% 83% 93%

c -92% 0 0 92% 0

d -92% 0 0 92% 0

b -83% -92% -92% 0 -93%

e -93% 0 0 93% 80%

ASM Science Journal, Volume 19, 2024

6

relations using the relative to the best threshold. We also

approve activities with a dependency measure greater than

the absolute dependency threshold and a dependency

measure close to the best candidate. The dependency graph is

created in 12 steps. In steps 4 through 9, the all-tasks-

connected heuristic is used. In steps 10 through 12, the

process model is expanded with additional reliable arcs

(Yulion et al., 2022).

Thus, the DG is generated using the default settings and all-

tasks-connected heuristic from Table 2. By changing the

settings, we can get different dependency graphs. For

example, if we use a length-one loop threshold of 0.7, we can

get specific representation of the DG (see Figure 2). The

dependency graph also supports a self-loop on activity e. You

may notice that activities a and b are missing one set of

activities. This is due to the fact that a is the initial activity and

b is the final activity.

Figure 2. Dependency Graph illustration.

Mining long-distance dependencies is optional and is

determined by the settings. It identifies relations that have

not yet been included in the dependency graph.

A new frequency-based metric has been defined to address

this issue. A long-distance dependency measure considers

direct or indirect successors. The fundamental concept is to

detect pairs of tasks with comparable frequency, where the

second activity follows the first either directly or indirectly.

The formal definition of the long dependency measure is cited

in (Yulion et al., 2022).

To obtain the long-distance dependency measures, we must

apply this operation (see equation 8):

𝑎𝑎 ⟹𝑤𝑤
1 𝑏𝑏 = �2∗|𝑎𝑎>>>𝜔𝜔𝑏𝑏|

|𝑎𝑎|+|𝑏𝑏|+1
− 𝑎𝑎𝑎𝑎𝑎𝑎(|𝑎𝑎|−|𝑏𝑏|)

|𝑎𝑎|+|𝑏𝑏|+1
� (8)

where 𝐿𝐿 is an event log over 𝑇𝑇, 𝑎𝑎, 𝑏𝑏 ∈ 𝑇𝑇,

|𝑎𝑎 >>>𝜔𝜔 𝑏𝑏| is the number of times 𝑎𝑎 >>>𝜔𝜔 𝑏𝑏 b occurs in 𝐿𝐿,

|𝑎𝑎| is the number of times 𝑎𝑎 occurs in 𝐿𝐿.

|𝑏𝑏| is the number of times 𝑎𝑎 occurs in 𝐿𝐿.

The final step is to transform the dependency graph into a

causal net. To accomplish this, we must mine input and

output bindings for each activity. We replay the event log and

count each unique pattern after this activity to build the

output binding of the activity. We stop counting when we find

the next occurrence of the activity under consideration, and

we only count those activities where the activity under

consideration is the pattern's nearest input. The input

bindings are discovered in the same manner, but in the

opposite direction.

The causal net is the result of the Heuristic miner. For some

analyses, such as determining the conformance between an

event log and the model, we must transform the causal net to

the Petri net. In (Silva & Mira Da Silva, 2022), the authors

describe this conversion. However, such a conversion is

problematic because it may result in unsound Petri nets, and

Petri nets may have a firing sequence that cannot be extended

to become a legitimate firing sequence. To produce a simpler

model, we skip some unnecessary invisible transitions.

ASM Science Journal, Volume 19, 2024

7

ProM software employs a similar approach to mine. The

ProM2 conversion, on the other hand, does not consider long-

distance dependencies. As a result, the model may allow

traces. In this context, our implementation solves this

problem by allocating additional locations for each long-

distance dependency.

IV. IMPLEMENTATION

The purpose of this paper was to describe an advanced

algorithm for process modelling, known as the heuristics'

miner. It begins with an overview of process mining. It then

goes on to explain to the reader the models that are used and

the definitions that are required. Following that:

A. Structure

The PMLib library was created with extensibility, portability,

and maintainability as primary goals. As a result, the library

uses very few external, non-standard libraries, with Deedle

(Phillippe, 2020) being the only one used at the time of

writing this paper, a library used for importing data from CSV

files and storing data in data frames. PMLib is built with .NET

Core 3, a Microsoft ecosystem open-source, cross-platform

development framework. As described in the .NET Core

overview (Microsoft, 2020), .NET Core is a versatile

framework for building modern applications.

Deedle, an exploratory data library for .NET, as described

in the documentation provided by Blue Mountain Capital

(2020), is a valuable tool for data analysis.

2 https://www.promtools.org/doku.php

B. Structure

The library's design is hierarchical, albeit relatively flat, with

the goal of separating functionality into directories and

subdirectories so that a potential user only needs to import

the parts of the library that are required. A hierarchical

structure with few levels fits process mining techniques

rather well because the scientific field is divided into three

main compartments, the most commonly used of which are

play-in and replay (see Figure 3), and these compartments

are mostly made up of relatively standalone procedures. The

source code for this project is available on the GitHub 3

platform. There are three directories in the solution. We

ignored the conformance checking part. We focus only on the

discovery and the Model directories. Therefore, we conclude

the following hierarchical directory structure:

• ProcessM.NET – solution.

- Discovery / HeuristicMiner

HeuristicMiner

DependencyMatrix

DependencyGraph

HeuristicMinerSettings

- Model/ CausalNet

 CNet

 CNetUtils (transformation to Petri net)

• ProcessM.NET-tests - unit tests and necessary resources

for testing

• ProcessM.NET-Demo – demonstration

3 https://github.com/lasaris/ProcessM.NET

ASM Science Journal, Volume 19, 2024

 8

Figure 3. Dependency Graph illustration.

In PMLib (2015), event logs are represented by an

ImportedEventLog class, which consists of a Deedle data

frame and three string properties – CaseId, Activity, and

Timestamp – to highlight the case, activity, and timestamp

columns in the data frame. Initially, the string properties are

set to null.

Only a data frame is used to create an instance of the

ImportedEventLog class. The class then includes methods for

configuring the three string properties, two of which – CaseId

and Activity – are required before the event log can be

processed into a workflow log. The Timestamp property is not

required for creating a workflowlog because the order of

events in the event log will be used to order activities in cases.

However, some process mining techniques, such as

bottleneck mining, require the Timestamp property to be

defined in order to function properly.

The subdirectory contains two classes for modelling

workflow traces: WorkflowTrace and

TimestampedWorkflowTrace. For the most part, the classes

are similar in that they both serve as simple containers for a

string property Case, indicating the case under which the

activities in the WorkFlowTrace were grouped, and a

collection of strings, Activities, containing the activities of

events belonging to the specified case. The classes then

provide methods for inserting activities into the trace, and

both are created with only a Case string as an input. The

ordering of the activities is what distinguishes the two classes.

WorkflowTrace stores the activities in the same order that

they were added to the trace, using a list of strings as a

container.

The relations are implemented in the class SucessorMatrix.

There are three matrices in the class. The DirectMatrix stores

relational information >𝜔𝜔 . The L2LMatrix stores relational

information >>𝜔𝜔 , while the LongDistanceMatrix stores

relational information >>>𝜔𝜔 . In addition, the Activity

Occurrences class contains an array of activity occurrences.

The dependency graph is implemented in the classes

HeuristicMinerSettings and DependencyGraph.

The HeuristicMinerSettings folder also includes the default

values for these settings. Because int comparison is faster

than string comparison, activities in the DependencyGraph

are stored as int. As a result, the class provides two types of

mapping, such as int to string and vice versa. There is a

distinct StartActivity and EndActivity. InputActivities and

OutputActivities, which are lists of hash sets, are included in

the class (accessible by activity ID). Finally,

LongDependencies is a hash set of tuples that stores long-

distance dependencies.

The implementation of causal networks is divided into three

classes: CNet, CPlace, and Binding. The Binding class keeps

track of a collection of Activities and their Frequency. The

CPlace class holds nodes that contain information about the

activity Id and frequency. The causal net is represented by the

CNet class. Because activities are once again stored as

integers, there are two mapping functions. Nodes are

represented by a list of CPlaces that are stored in Activities. It

has a distinct StartActivity and a distinct EndAcitivity.

ASM Science Journal, Volume 19, 2024

9

Furthermore, the dictionaries InputBindings and

OutputBindings are supplemented by the LongDistance

dictionary for long-term dependent activities.

The Petri net subdirectory contains a representation of a

Petri net and its components– places, transitions, and arcs –

for the PMLib library's needs. Because PMLib is a process

mining library, the term "Petri net" is understood to be

synonymous with "workflow net". It should also be noted that

the Petri net model lacks firing functionality, as only the static

part of the model is required for a significant portion of the

library. The firing functionality is then implemented as an

overlay to the static model of a Petri net in directories

containing classes that require such behaviour to function

properly.

The static part of a Petri net is represented by three classes

in the Model directory: Place, Transition, and PetriNet, which

implement three corresponding interfaces: IPlace,

ITransition, and IPetriNet.

C. Import and Export

The PMLib library also includes Petri net import and export

functionality. The Import directory contains two classes:

CSVImport and PNMLImport. The Export directory contains

two classes: DOTExport and PNMLExport. CSVImport is a

static class with a single method – MakeDataFrame.

The method takes a path to a.csv file and several optional

arguments before passing the input to Frame.

Deedle library's ReadCsv method generates a data frame

containing the imported data. The method then creates and

returns an instance of the ImportedEventLog class using the

imported data frame.

PNMLImport is a static class with one public method:

Deserialise. The method expects a string containing the path

to an.xml file containing a Petri net representation in the

standardised Petri Net Markup Language (PNML, 2015). If

such a Petri net exists in the file, the method parses the XML

and returns a Petri net.

DOTExport is a static class with one public method,

Serialise. As input, the method expects an instance of a class

derived from the IPetriNet interface, as well as an optional

string value of indentation sequence. The method then

generates a representation of the given Petri net in a dot

language (2020), which can be visualised using dot-

compliant tools like Graphviz (2022). The dot representation

of the given Petri net is then saved as a.dot file, and the

method returns the full file name.

PNMLExport is a static class with one public method:

Serialise. As an input, the method expects an instance of a

class derived from the IPetriNet interface. Following that, the

method generates a PNML-compliant XML representation of

the given Petri net. Then, the method saves the XML

representation of the Petri net into a.xml file and returns the

full file name.

V. CONCLUSION

The purpose of this paper was to describe an advanced

algorithm for process modelling, known as the heuristics'

miner. It begins with an overview of process mining. It then

goes on to explain to the reader the models that are used and

the definitions that are required. Following that, it explains

how the Heuristic Miner works.

As the only one currently available, the library presented in

this paper is written in the C#.NET Core 6 framework. It is

designed to be simple to understand, even for developers who

are unfamiliar with process mining. The implementation has

been thoroughly documented. It also includes the unit tests

for the miner algorithm and the heuristics. The GitHub1

platform is used to access the library.

The library is a fully functional process mining library that

is future-extensible (inductive miner algorithm). This paper's

text may be used as study material for these algorithms.

In the future, we hope to implement the inductive miner

algorithm using the Process Mining .NET library. The future

implementation must include the genetic miner algorithms as

well as a set of automatic tests to demonstrate the genetic

miner algorithm's proper functionality.

ASM Science Journal, Volume 19, 2024

10

VI. REFERENCES

Coutinho-Almeida, J & Cruz-Correia, RJ 2022, ‘Developing a

Process Mining Tool Based on HL7, Procedia Computer

Science, vol. 196, pp. 501–508.

Phillippe, R 2020, Deedle: Exploratory data library for .NET,

New York, New York: Blue Mountain Capital, viewed on 24

May 2020,

<https://bluemountaincapital.github.io/Deedle/csharpint

ro.html>.

El-Gharib, NM & Amyot, D 2019, ‘Process Mining for Cloud-

Based Applications: A Systematic Literature Review’, in the

Proceeding of the 27th International Requirements

Engineering Conference Workshops, Jeju, 27 September

2019, Jeju, Korea South.

Ellson, J 2022, Graphviz - Graph Visualization Software,

viewed on 4 February 2022, <

https://www.graphviz.org/doc/info/lang.html>.

Janssenswillen, G, Depaire, B, Swennen, M, Jans, M &

Vanhoof, K 2019, ‘bupaR: Enabling reproducible business

process analysis’, Knowledge-Based Systems, vol. 163, pp.

927–930.

Microsoft 2020, NET Core overview, Albuquerque, New

Mexico: Microsoft, viewed on 4 February 2020,

<https://docs.microsoft.com/en-us/dotnet/core/about>.

PNML: Petri Net Markup Language, Pnml.org, viewed on 4

February 2022, <http://www.pnml.org>.

Raffety, J, Stone, B, Svacina, J, Woodahl, C, Cerny, T &

Tisnovsky, P 2021, ‘Multi-source Log Clustering in

Distributed Systems, Lecture Notes in Electrical

Engineering’, vol. 739, pp.31–41.

Silva, EC & Mira Da Silva, M 2022, ‘Research contributions

and challenges in DLT-based cryptocurrency regulation: a

systematic mapping study’, Journal of Banking and

Financial Technology, vol.6, no.1, pp.63-68.

Van der Aalst, WMP, Adriansyah, A & van Dongen, B 2011,

‘Causal Nets: A Modeling Language Tailored towards

Process Discovery’, Lecture Notes in Computer Science, vol.

6901, pp. 28-42.

Van der Aalst, WMP 2016, ‘Data Science in Action’, Process

Mining: Data science in Action, 2nd ed, Berlin Heidelberg,

Springer, pp. 3-22.

Waibel, P 2022, Causal Process Mining from Relational

Databases with Domain Knowledge, viewed on 20 July

2023, <https://arxiv.org/abs/2202.08314>.

Yulion, D, Yahya, BN & Lewi Engel, VJ 2022, ‘Building a

robust transition matrix using causal matrix for route

recommendation’, Procedia Computer Science, vol. 197, pp.

768–775.

https://arxiv.org/abs/2202.08314

