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Mathematical modelling of drug transport to the skin is useful to gain fundamental understanding 

on the drug permeation mechanism for formulation design. For this purpose, the diffusion 

equation from Fick’s law of diffusion is commonly used to model the transport of drug through the 

skin. In this paper, this diffusion equation was solved using Laplace transform with appropriate 

initial and boundary conditions representing infinite dosing. The solution was then inverted 

numerically using the Weeks method and used to fit drug experimental data for the estimation of 

the apparent partition coefficient, P1 and apparent diffusion coefficient, P2. To test this model, 

particularly on the best curve fitting algorithm to use, the estimated P1 and P2 values were 

compared to those reported in literature. Three curve fitting methods, namely simple loop, particle 

swarm optimization (PSO) and non-linear least squares (NLS), were evaluated. The result suggests 

that PSO and NLS can provide P1 and P2 estimates that are comparable to those reported in the 

literature.  
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I. INTRODUCTION 

 
Drug delivery through the skin serves as an attractive 

alternative to conventional drug administration systems 

such as oral and parenteral routes. The delivery method 

offers several advantages over the conventional method such 

as steady and controlled release of medication over a long 

period of time, low frequent dosing, avoidance of the first-

pass metabolism, and improved drug therapeutic effect 

(Grammatikopoulou et al., 2021; Park et al., 2022; 

Karthikeyan & Sivaneswari, 2024). Drug transport from 

formulations through the skin is an important phenomenon 

that is usually mathematically modelled based on the 

diffusion principle using Fick’s second law and principle of 

mass transfer (Pontrelli & Monte, 2014; Khanday et al, 2017; 

Yadav et al., 2022; Čukić & Galovic, 2023). Mathematical 

model is a valuable way for gaining a better insight into the 

fundamental physics underlying bio-transport processes and 

for assessing parameters defining skin permeability, 

partition and diffusion coefficients, drug dissociation and 

association rates (Monte et al., 2015; Liu et al., 2020; 

Jenner et al., 2021). A proper estimation of drug permeation 

parameters from the model is particularly important for 

modulating the formulation properties for effective delivery 

of drugs through the skin.  

Several studies have reported the potential of 

mathematical models to estimate drug permeation 

parameters (Herkenne et al., 2007; Nozaki et al., 2016; 

Defraeye et al., 2021). In such studies, permeation 

parameter estimation is commonly performed by fitting the 

diffusion model solution to the in vitro permeation data 

using a nonlinear-curve fitting software package such as 

Scientist® 3.0 by Micromath®. In this study, the analytic 

solution of the diffusion model is first derived by Laplace 

transform technique. Then, the estimation of model 

permeation parameters is performed by inverting the 
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Laplace domain solutions into the time domain and by 

fitting the model to experimental data points using a curve 

fitting method.  In Python, the model inverted the diffusion 

equation using the Weeks method (Kano et al., 2021; 

Kamran et al., 2024) and curve fits the solution to a set of 

data for the estimation of the apparent partition, P1, and 

apparent diffusion, P2, parameters.  

 

II. MATERIALS AND METHOD 
 
Permeation experiments can be conducted using infinite and 

finite dose regiments with the former being commonly 

performed to characterise the pharmacokinetic parameters. 

A drug permeation experimental system involves the 

membrane (or skin) placed between the donor and receptor 

compartments (Figure 1). In the experiment, the amount of 

drug that permeates through the membrane/skin from the 

donor to the receptor compartments is measured. In an 

infinite dose study, the drug concentration on the 

membrane (skin) remains constant throughout the 

experiment while the concentration changes in a finite dose 

study. In the following section, the Laplace solution of the 

diffusion equation for an infinite dose study is first 

presented. This is followed by an overview of the curve 

fitting methods considered in this study. 

 

 

 

 

Figure  1. Schematic representation of in vitro drug 

permeation through a membrane or the skin 

 
A. Infinite Dose Model 

 
The skin permeation model is usually created based on 

diffusion principle using Fick’s second law and the principle 

of mass transfer governed by Equation (1) (Crank, 1975; Liu 

et al., 2020). 
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Here, Cm(x,t) [mass per volume] is the drug concentration 

in the membrane (skin) at distance x and time t, hm [length] 

is the membrane thickness and Dm [length square per time] 

is the diffusion coefficient of the drug in the membrane. The 

solution of Equation (1) can be derived by Laplace transform 

using the initial condition (2) and boundary conditions (3) 

and (4).  Initially, no drug is present in the membrane, as 

given by 

( ) ≤ ≤ ≥,0 ,     0 ,  0.m mC x x h t   (2) 

The boundary condition at the donor surface (x = 0, t > 0) 

is defined by 

( ) ( )=0, 0, ,m m dC t K C t   (3) 

where Km is the drug partition coefficient and Cd is drug 

concentration in the donor phase at any time. For an infinite 

dose study, Cd remains constant over time. 

The receptor fluid is constantly stirred to keep the contents 

homogeneous and constantly replenished to maintain a sink 

condition. The boundary condition at the receptor surface (x 

= hm, t > 0) is defined by 

( ) =, 0.m mC h t   (4) 

The Laplace transform solution of Equation (1) based on 

these initial and boundary conditions is given as Equation 

(5) where td = hm2/Dm is the characteristic time of drug 

diffusion through the membrane/skin. 
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According to Fick’s first law of diffusion, the flux J of 

solute from the skin to the receptor is given by 
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while the equation of the infinite dose cumulative amount 

( )Q s   permeated is defined by 
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with P1 = Kmhm and P2 = Dm/hm2. Here, it should be noted 

that a bar over a function denotes Laplace transform, s 

denotes Laplace variables, t denotes time variables, A is the 
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area of drug application, Cd is the initial donor drug 

concentration while P1 and P2 are the model parameters to 

be estimated by curve fitting.  To provide more confidence in 

the numerical method (Weeks method) used in our model, 

the following Fourier transform solution (8) of Equation (1) 

based on initial and boundary conditions (2)-(4) was 

employed. 
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B. Model Testing Data 

 
Table 1 lists the permeation data obtained from Santos 

(2008) for model testing. These permeation data represent 

infinite dose profiles of a hypothetical scenario of a drug (1 

µmol/mL) diffusing through a 0.0015 cm membrane with a 

lag time of 3 hours. As shown in Figure 2, these profiles were 

generated randomly by Santos (2008) with a 20% variation 

from the original permeation curve for model testing 

purposes.  These data were adopted in this study to allow 

comparison of the estimated P1 and P2. 

Table  1. Data from Santos (2008) for model testing 

Time, 
t (h) 

Permeation (µmol × 10-3 / cm2) Data 
1 2 3 4 5 

2 0.19 0.20 0.20 0.21 0.21 
4 1.25 1.13 1.65 1.30 1.42 
6 2.53 3.19 2.99 3.64 3.27 
8 4.27 4.28 4.14 4.09 5.61 
10 7.02 7.60 5.89 8.25 5.72 
12 9.03 8.71 7.29 8.88 7.22 
14 11.05 8.77 11.97 9.91 12.40 
16 14.85 12.04 13.07 14.45 13.71 
18 15.23 13.97 14.63 15.24 14.88 
20 18.32 15.85 15.89 18.43 17.18 
22 18.71 20.00 19.54 18.99 20.02 
24 19.91 21.03 24.90 22.31 23.56 

 

 

Figure  2. Original permeation profile and the data listed in 

Table 1 that were generated randomly  

A. Curve Fitting Optimisation 
 
In this study, the parameters P1 and P2 were estimated by 

fitting Equation (7) to the data in Table 1. Three curve fitting 

methods, namely simple loop, particle swarm optimisation 

and non-linear least squares, were tested to ensure that the 

estimated P1 and P2 for these data are comparable to the 

estimates by Scientist® that were reported in Santos (2008) 

and to determine the best curve fitting method to use. 

 
1. Simple loop 

 
The simple loop (SL) method increased the values of P1 and 

P2 within a user-defined range by a certain amount 

(increment). The Root Mean Square Deviation (RMSE) was 

calculated for each pair of P1 and P2 and the iterated pair(s) 

of P1 and P2 values with the lowest RMSE was returned as 

the best interval fit values. For the data listed in Table 1, the 

interval defined for the search using this method is [0.010, 

0.060] with an increment of 0.001 to cover the range of P1 

and P2 estimated by Santos (2008). This means that P1 and 

P2 values are respectively varied from 0.010 to 0.060 with 

an increment of 0.001, resulting in 51×51 pairs of P1 and P2 

values.  

 
2. Particle Swarm Optimization 

 
The Particle Swarm Optimization (PSO) method estimates 

parameters by finding the optimal set of parameter values in 

the model that minimises the disparity between the model 

predictions and the experimental data in the search space 

(bound) using the user choice objective function (Ahmed, 

2022). The objective function used in this work is the sum of 

squared errors, S (P1, P2), defined as: 

𝑆𝑆(𝑃𝑃1,𝑃𝑃2) = ∑ �𝑌𝑌𝑖𝑖 − 𝑄𝑄(𝑡𝑡𝑖𝑖 ,𝑃𝑃1,𝑃𝑃2)�2𝑁𝑁
𝑖𝑖=1 .  (9) 

Here, Yi is observed data from experiment, Q (ti, P1, P2) is 

the predicted values from the model equation and N is the 

number of data points.  

This study implemented the PSO algorithm in Python 3.9 

for the estimation of P1 and P2 through curve fitting. To 

estimate the value of the parameters, the upper and lower 

bounds, which served as search bound, for each parameter 

must be defined. Other input parameters include number of 

particles, iteration numbers and inertia weight. The 

algorithm iteratively updates position and velocity of each 
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particle within the search bound based on the current best 

position. The best position (or fit) was decided by 

minimising the disparity between the model predictions and 

the experimental data, as defined by the objective function. 

 
3. Non-linear least squares 

 
The non-linear least squares (NLS) method estimates 

parameters by finding the parameter values of the model 

parameters that minimise the difference between the 

predicted values from the model and the experimental data 

(Griva et al., 2009). The error between the predicted and 

experimental values is typically measured using the sum of 

squared errors or the mean squared error. In this study, this 

method was implemented using the curve fit function in 

Python 3.9. The range of P1 and P2 can be specified but is not 

required for this method. It should be noted that even if the 

bounds imposed for SL and PSO were used, the P1 and P2 

estimated using this NLS approach, in this study, would 

remain the same.  

 
III. RESULT AND DISCUSSION 

 
To ensure that the model performance is comparable to 

Scientist®, the permeation parameters, P1 and P2, obtained 

through curve fitting by the simple loop (SL) method, 

Particle Swarm Optimization (PSO) and non-linear least 

squares (NLS) were compared to those reported by Santos 

(2008).  The curve fitting was performed on each of the five 

data sets listed in Table 1 for various time intervals, namely 

2-24 (t=2 to t=24 ), 2-22 (t=2 to t=22), 2-20 (t=2 to t=20), 

2-18 (t=2 to t=18) and 2-16 (t=2 to t=16), to allow 

comparison of the results using SL, PSO and NLS with the 

those by Scientist®. Figure 3 shows that, using the NLS 

method, the model fits the data well with R2 > 0.95 (Chicco 

et al., 2021) for all time intervals. Fitting with the SL and 

PSO methods based on the defined bounds and increments, 

resulted in an equally good fit with R2 >0.94 across all time 

intervals. Since the fittings using SL, NLS and PSO are 

visually the same, the illustration of the fittings using SL and 

PSO are omitted. 

 

Figure  3. Fitted permeation profile of (a) Data 1, (b) Data 2, 

(c) Data 3, (d) Data 4 and (e) Data 5 using the NLS method. 

The data in Table 1 are indicated as red dots.  For each data, 

curve fitting was made for time intervals 2-24, 2-22, 2-20, 2-

18 and 2-16. 
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The mean and standard deviation of the P1 and P2 

estimated for the five data sets in each time interval are 

calculated and listed in Table 2 along with the Relative 

Standard Deviation (RSD), which measures the relative level 

of data variability. A smaller RSD value indicates greater 

precision and consistency in data while a greater RSD value 

indicates higher variability. The results using SL, PSO and 

NLS are largely comparable to the Scientist® results, except 

for the time interval 2-16. It should be noted that Scientist® 

performed non-linear regression analysis (least squares fit) 

so NLS estimated value is expected to be similar to that of 

Scientist®. It can be seen from Table 2 that the calculated 

mean and standard deviation of P1 and P2 estimated using 

NLS are similar to the mean and standard deviation 

reported in Santos (2008), which were obtained using 

Scientist®, except for the interval 2-16. At the time of this 

study, access to Scientist® cannot be acquired. Hence, 

further checking of this result by running the analysis 

independently using the software cannot be performed. 

  

Table 2. Estimated P1 and P2 parameters using SL, PSO and NLS compared with the estimates from Santos (2008) using 

Scientist® for various time intervals 

Interval 
(h) 

P1 
Scientist®  SL PSO NLS 

M±SD (cm) RSD (%) M±SD (cm) RSD (%) M±SD (cm) RSD (%) M±SD (cm) RSD (%) 
2-24 0.026±0.008 30.0 0.028±0.008 28.6 0.026±0.008 30.0 0.026±0.008 30.0 
2-22 0.023±0.002 8.6 0.024±0.003 11.0 0.023±0.002 9.1 0.023±0.002 8.7 
2-20 0.022±0.004 17.7 0.023±0.004 18.2 0.021±0.004 17.9 0.022±0.004 17.6 
2-18 0.023±0.006 25.9 0.025±0.006 25.0 0.023±0.006 24.4 0.023±0.006 25.8 
2-16 0.019±0.004 21.1 0.027±0.009 34.8 0.027±0.009 33.3 0.026±0.010 37.1 

Interval 
(h) 

P2 
Scientist®  SL PSO NLS 

M±SD (cm) RSD (%) M±SD (cm) RSD (%) M±SD (cm) RSD (%) M±SD (cm) RSD (%) 
2-24 0.044±0.009 20.2 0.042±0.006 20.9 0.044±0.009 20.0 0.044±0.009 20.3 
2-22 0.046±0.004 8.0 0.045±0.004 9.7 0.046±0.004 8.3 0.046±0.004 8.0 
2-20 0.049±0.006 12.9 0.047±0.006 13.3 0.049±0.007 13.0 0.049±0.006 12.8 
2-18 0.048±0.009 19.3 0.046±0.009 18.6 0.047±0.008 17.7 0.048±0.009 19.3 
2-16 0.053±0.006 11.9 0.044±0.011 24.1 0.045±0.011 23.8 0.046±0.013 28.6 

 

Based on the results presented in Table 2, it appears that 

the SL, PSO and NLS methods provided more consistent 

estimation of P1 and P2 compared to Scientist®. The mean 

of P1 estimated by SL, PSO and NLS ranges from 0.021 to 

0.028 for all time intervals while the mean P1 from 

Scientist® ranges from 0.019 to 0.026. Similarly, the mean 

P2 estimated by Scientist® has a larger range from 0.044 to 

0.053 compared to SL, PSO and NLS (0.042-0.049). As 

illustration, Figure 3 shows that the model result using NLS 

fits the data well with R2 > 0.95 for all time intervals.  

The P1 and P2 values estimated via NLS curve fitting using 

Equation (8) agreed well with the values estimated using the 

Laplace transform method. Hence, it is highly unlikely that 

difference between the estimated P1 and P2 in this study and 

those reported in Santos (2008) for the time interval 2-16 

was induced by the numerical Laplace inversion method 

used. The Weeks method has also been previously tested by 

comparing the numerical result to analytical solution for 

some initial value problems.  

Among SL, PSO and NLS methods, NLS method is 

recommended for use. Although all three curve fitting 

methods provided comparable estimations of P1 and P2, SL 

and PSO are limited in the sense that a search bound must 

be imposed. The range of P1 and P2 values for well-studied 

drugs is widely reported so the search bound can be 

ascertained for these drugs. But the search bound may not 

be confidently defined for the less studied or new drugs. SL 

is deemed the least suitable because the number of P1 and P2 

values is limited by the user through the specification of the 

search bound (upper and lower limits of P1 and P2) and the 

increment. Hence, the accuracy of the P1 and P2 estimates by 

SL depends significantly on the search bound and increment 

imposed by the user.  Similar to SL, PSO requires a search 

bound although the increment is not needed. Nevertheless, 

if a sufficiently large search bound is imposed for PSO, its 
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result will be comparable to NLS, which doesn’t require a 

search bound. 

 
IV. CONCLUSION 

 
A mathematical model based on infinite dose study was 

developed and tested in this study. In the model, the Weeks 

method is used to numerically invert the solution of the 

diffusion equation, which is then used to estimate the 

permeation parameters by curve fitting. The estimated 

optimal P1 and P2 values using three curve fitting algorithms, 

namely simple loop (SL), Particle Swarm Optimization 

(PSO) and nonlinear least squares (NLS), were compared to 

the estimates from Scientist®. The results using SL, PSO 

and NLS are comparable with the reported results using 

Scientist® except for the fitting of data within the 2-16 

interval. Since Scientist® is performing similar non-linear 

regression as NLS, their results are expected to be the most 

comparable, compared to SL and PSO. Estimates obtained 

using NLS are similar to Scientist® for the intervals 2-24, 2-

22, 2-20 and 2-18. Although the estimates using the three 

curve fitting methods explored in this study are comparable, 

NLS is preferred mainly because the range of P1 and P2 need 

not be known/specified for curve fitting.  The model results 

using NLS fit the data well for all intervals with R2 > 0.95. 
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