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Autonomous driving safety requires accurate pedestrian detection. This study introduces real -time 

pedestrian detection based on the YOLOv10 algorithm. Adding EfficientNet, C2F-DM, BiFormer, 

and a multi-scale feature fusion detection head to the backbone, neck, and multi-scale networks 

creates a real-time object detection model. Experiments demonstrate that YOLOv10 can detect 

multi-scale pedestrians in complicated settings. The implementation of YOLOv10 for pedestrian 

detection in Autonomous Vehicles advances the field of intelligent transportation systems and 

contributes to the broader goal of creating safer, more efficient autonomous driving technologies. 

Future work includes refining the algorithm for multi-object detection, reducing false positives, 

and enhancing robustness against environmental variability. 
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I. INTRODUCTION 

 
Autonomous driving technology has advanced intelligent 

transportation systems, with pedestrian detection essential 

for driving safety. From Faster R-CNN to YOLOv10, target 

detection techniques have significantly advanced. Since 

2015, Faster R-CNN has used region proposal networks and 

convolutional neural networks to recognise targets precisely 

(Leong, Leong & San Leong, 2024). Since 2016, the YOLO 

series algorithms have improved model structures and 

training methodologies, increasing detection speed and 

accuracy (Redmon & Farhadi, 2018). In addition, SSD and 

RetinaNet algorithms have solved problems in several 

dimensions (Tan, Pang & Le, 2020). The newest EfficientDet 

balances accuracy and speed for real-time pedestrian 

identification in complicated situations (Leong, 2022). 

This paper presents real-time YOLOv10 pedestrian 

detection with multi-scale feature fusion and edge detection, 

enhancing accuracy and robustness with implications for 

autonomous driving, intelligent surveillance, and unmanned 

aircraft (Leong, 2019). (Mandic, Souretis, Leong, Looney, 

Van Hulle, & Tanaka, 2008).  

II. LITERATURE REVIEW 

 
From Faster R-CNN to YOLOv10, object detection 

techniques have advanced their ability to optimize 

structures and training approaches (Patil, Nawade, 

Nagarkar & Kadale, 2024). 

 

A. Faster R-CNN 
 

In 2015, Faster R-CNN was proposed for high-precision 

detection. It combines a Convolutional Neural Network 

(CNN) with a Region Proposal Network (RPN). CNN 

manages object categorisation and bounding box regression 

while RPN develops candidate regions, improving detection 

accuracy (Hussain & Khanam, 2024). Due to its complex 

computational method and high resource requirements, 

Faster R-CNN may not be suitable for real-time 

applications. 

 

B. YOLO Series 
 

From YOLOv1 to YOLOv10, the YOLO (You Only Look 

Once) series has improved detection speed and accuracy. 
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The YOLO series' end-to-end detection approach localises 

and classifies objects in one forward pass, lowering 

detection time (Alif & Hussain, 2024). Model structures and 

training methods are optimised in each YOLO version: 

 YOLOv1: Single-pass detection, faster but struggles 

with small objects and complex scenes. 

 YOLOv2 and YOLOv3: Improved accuracy and small 

object detection with multi-scale features. 

 YOLOv4: Enhanced accuracy and speed with Bag of 

Freebies and Specials. 

 YOLOv5 to YOLOv10: Optimised architecture, better 

feature extraction, and inference for complex 

environments. 

 

C. SSD and RetinaNet 
 

SSD (Single Shot MultiBox Detector) and RetinaNet are two 

crucial algorithms in object detection, each offering efficient 

solutions in various scalings (Mingxing, Ruoming & Le 

Quoc, 2020). 

 SSD: SSD performs multi-scale detection for high-

speed tasks, which is ideal for real-time applications 

but struggles with small object detection. 

 RetinaNet: The Focal Loss function was introduced 

to mitigate the class imbalance issue, enhancing 

object detection accuracy and rendering it 

appropriate for intricate task settings. 

 

D.  EfficientDet 
 

EfficientDet combines EfficientNet and BiFPN technologies 

to strike a harmonious equilibrium between precision and 

efficiency, making it well-suited for real-time applications in 

complex real-world settings. The evolution of algorithms 

demonstrates improvements in precision, speed, and 

computing efficiency (Tan et al., 2024). 

 

III. IMPROVED YOLOV10 MODEL 
ARCHITECTURE 

 
To enhance the precision and robustness of pedestrian 

identification, YOLOv10 includes enhancements to the neck 

network, detecting head and backbone network (Wang et al., 

2024) (Li, Leong & Zhang, 2024). The network architecture 

of the EfficientNet-YOLOv10 model is seen in Figure 1. 

 

 

Figure  1. Network Structure of EfficientNet-YOLOv10 

Model 

 
A. Backbone Network Optimisation 

 
Integration of C2F-DM modules and an enhanced 

EfficientNet topology enhances feature extraction in the 

backbone network of YOLOv10 (Wan et al., 2018). 

 

1. EfficientNet Structure 

 
EfficientNet optimises convolutional layer depth, breadth, 

and resolution for feature extraction. The formula is as 

follows: 

𝐹𝐿𝑂𝑃𝑠 ∝ 𝑑 ⋅ 𝑤2 ⋅ 𝑟2                             (1) 

where d is the network depth, w is the network width, and r 

is the input image resolution.  

This three-dimensional scaling is achieved utilising the 

compound scaling factor: 

𝑑 = 𝛼𝜙，𝑤 = 𝛽𝜙，𝑟 = 𝛾𝜙                   (2) 

where 𝛼，𝛽，𝛾 are constants satisfying 𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2. 
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2. C2F-DM Module 

 
The C2F-DM module takes feature extraction to the next 

level by including dilated convolutions and cross-stage 

partial networks. The C2F-DM module is architecturally 

structured as follows: 

C2F − DM(𝑥) = 𝑥 + Conv(𝑥) + DilatedConv(𝑥)      (3) 

where Conv(x) illustrates a standard convolution operation, 

a DilatedConv(x) depicts a dilated convolution procedure. 

 
B.  Feature Fusion Module 

 
The enhanced YOLOv10 model incorporates the BiFPN 

(Bidirectional Feature Pyramid Network) to significantly 

extend the feature extraction capabilities. By employing 

weighted bidirectional feature fusion, BiFPN successfully 

combines features at various scales, thereby enhancing the 

resilience and precision of target identification. The 

computing procedure is outlined below: 

𝑃𝑖 = ∑ 𝑤𝑖𝑗𝑝𝑗
𝑗

                                       (4) 

where P_i is the fused feature map,  P_j  is the input feature 

map, and w_ij is the weight coefficient, with all weights 

normalised such that ∑ 𝑤𝑖𝑗𝑝𝑗
𝑗

= 1. 

 

C.  Detection Head Optimisation 

 
The enhanced YOLOv10 model integrates optimisation 

techniques from EfficientDet into its detection head, 

resulting in precise identification by combining features at 

several scales (Janocha & Czarnecki, 2017). More precisely, 

the subsequent equations are employed for object 

categorisation and bounding box regression. 

 

Classification Loss: 

𝐿𝑐𝑙𝑠 = − ∑ (𝑦𝑖log (𝑝
^

𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝
^

𝑖))
𝑁

𝑖=1
     (5) 

 

Bounding Box Regression Loss (Rezatofighi et al., 2019): 

𝐿bbox = ∑ Smooth𝐿1(𝑡𝑖 − 𝑡
^

𝑖)  
𝑁

𝑖=1
                 (6) 

where 𝑦𝑖  is the actual class, 𝑝̂𝑖  is the predicted class 

probability,  𝑡𝑖 is the proper bounding box parameter, 𝑡̂𝑖 is 

the predicted bounding box parameter, and N is samples’ 

number. 

 

IV. EXPERIMENTS 

 

A. Experimental Setup 

 
To evaluate the practical application and performance of the 

improved YOLOv10 algorithm, we conducted experiments 

under controlled conditions using the same datasets and 

hardware configurations. The datasets used in the 

experiments include COCO, KITTI, and VOC, which are 

widely recognised benchmarks for object detection tasks. 

The hardware configuration for all experiments consisted of 

an NVIDIA Tesla V100 GPU, 32GB RAM, and an Intel Xeon 

E5-2698 v4 CPU, ensuring consistency in computational 

resources across all tested algorithms. 

 

B. Experimental Data 

 
The datasets utilised in the tests encompass a wide array of 

photographs with different degrees of intricacy, ranging 

from uncomplicated backgrounds to extensively patterned 

metropolitan landscapes. Specifically: 

 COCO Dataset: Tests object identification 

capabilities using ordinary scenarios and items. 

 KITTI Dataset: Images from autonomous cars in 

motion, including pedestrians, automobiles, and 

other essential items. 

 VOC Dataset: Provides annotated item images and 

measures detection accuracy 

 

C. Algorithms Compared 

 
To assess the performance impact of YOLOv10, EfficientDet, 

Faster R-CNN, SSD, YOLOv3, YOLOv4, and YOLOv5 were 

evaluated (Henderson & Ferrari, 2017). 

 

D. Performance Metrics 

 
These indicators were used to assess how well each 

algorithm performed.  

Mean Average Precision (mAP): Compares the identified 

items' accuracy to the markings on the ground to determine 

their correctness. It can be calculated using the following 

formula (Koslowsky et al., 2006): 

𝑚𝐴𝑃 =
1

𝐶
∑ 𝐴𝑃𝑖

𝐶
𝑖=1                                 (7) 
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where 𝐶  is the total number of 𝑖 − 𝑡ℎ categories. 𝐴𝑃𝑖  is the 

average precision for the category (Ahmad & Rahimi, 2024).  

Frames Per Second (FPS): Indicates algorithm speed for 

real-time applications. The calculation formula is as follows: 

𝐹𝑃𝑆 =
𝑁

𝑇
                                       (8) 

where 𝑁 is the total number of frames processed, 𝑇 is the 

total time to process these frames (in seconds). 

Recall: Evaluates the algorithm's ability to identify all the 

photos' relevant things (Leong, Leong, & San Leong, 2024). 

The calculation formula is as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (9) 

where 𝑇𝑃 is the number of correctly detected objects. 𝐹𝑁 is 

the number of missed objects.  

Inference Time:  Refers to the time required for a trained 

deep-learning model to process new input data (such as 

images or text) and generate prediction results. The 

calculation formula is as follows: 

𝑇inference =
𝑇total

𝑁
                                 () 

where 𝑇inference represents the inference time per sample. 

𝑇total represents the total inference time for processing N 

samples. N is the number of missed objects (Han et al., 

2015). 

 

V. RESULT AND DISCUSSION 

 
Within the experimental portion, we assessed the 

performance of different algorithms on these datasets by 

computing four quantitative metrics: mAP, FPS, Recall, and 

Inference Time. 

Figure 2 illustrates the performance of each method. 

 

A. Analysis of Results 

 
 mAP: YOLOv10 achieved the highest mAP, 

indicating the best performance in detection 

accuracy. SSD has the lowest mAP, showing a 

particular shortfall in detection accuracy. 

 FPS: YOLOv10 has the highest FPS, demonstrating a 

significant advantage in real-time processing, 

making it suitable for scenarios requiring high-speed 

processing. 

 Recall: YOLOv10 also has the highest recall rate, 

meaning it detects more objects with fewer misses. 

SSD has a relatively low recall rate, indicating it may 

miss more objects during detection. 

 Inference Time: Faster R-CNN exhibits a longer 

inference time, which renders it unsuitable for 

applications requiring rapid responses. Conversely, 

YOLOv10 demonstrates the shortest inference time, 

making it well-suited for real-time tasks such as 

autonomous driving. 

 

B. Discussion 

 
The experimental results show that the improved YOLOv10 

outperforms other models in terms of mAP, FPS, and 

Inference Time, making it the top choice for real-time object 

detection. Higher mAP, FPS, and shorter Inference Time 

demonstrate robustness and versatility. 

EfficientDet balances mAP, FPS, and Inference Time, 

making it suitable for high-performance applications, but it 

is more complex than YOLO models. SSD is fast with short 

Inference Time but has lower mAP, while Faster R-CNN is 

accurate but has a more extended Inference Time, making it 

unsuitable for real-time applications. 

YOLOv10 is the best choice for high-accuracy, real-time 

applications, especially in scenarios with low tolerance for 

missed detections. For offline tasks requiring high accuracy 

without real-time demands, Faster R-CNN is still a solid 

option. For resource-limited applications like embedded 

devices, SSD provides a lightweight solution. 

Optimising YOLOv10 and similar models can boost 

performance in complex scenarios. Future research may 

enhance these models by adding features or applying 

advanced training techniques (Leong, 2003; Leong, 2002). 

Although YOLOv10 demonstrates exceptional 

performance across various datasets, its efficacy may 

diminish under certain conditions: 
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Figure 2. Performance Comparison of Object Detection Algorithms 

 

 Complex Backgrounds: Under conditions of low 

contrast or inherent visual complexity, the model 

may struggle to distinguish the item from its 

immediate environment. 

 Rapidly Changing Scenes: The real-time object 

identification capability of YOLOv10 may be subject 

to challenges in highly dynamic situations 

characterised by quick changes, which could result in 

missed detections or delayed responses. 

 Resource-Constrained Edge Devices: Even with the 

enhancements implemented for edge computing in 

this work, YOLOv10 may still require assistance to 

achieve the necessary inference speed and accuracy 

in highly resource-constrained settings, restricting its 

suitability for real-time applications. 

 

VI.  FUTURE PROSPECTS AND 
DEVELOPMENT  

 
Recent advances in object detection algorithms offer several 

promising research and improvement opportunities (Li, 

Zhang & Liu, 2024). For YOLOv10 and similar models, the 

following are several promising directions to explore: 

 Time Series Analysis and Spatio-Temporal Feature 

Fusion: Integrating more contextual information into 

the model improves object detection, especially in 

autonomous driving and surveillance (Leong, 2024; 

2025e). 

 Reinforcement Learning and Adaptive Detection 

Mechanisms: Future studies can use reinforcement 

learning (RL) to construct adaptive detection 

systems that improve YOLOv10's performance in 

complex and unfamiliar contexts, increasing its 

practicality. 

 Multi-Modal Sensor Data Fusion: Infrared imaging, 

audio sensors, and depth sensors (e.g., LiDAR) may 

be integrated with visual data in future research. 

These sensors can capture data from multiple 

dimensions, increasing detection in fog or poor light. 

 Personalised Detection and Model Adaptive 

Evolution: Customised detection systems using 

online learning and model adaptive evolution may be 

researched in the future. This would allow YOLOv10 

to dynamically alter model parameters based on user 

needs or scenarios, expanding its possibilities. 

By embarking on these novel research avenues, the 

detection efficacy of YOLOv10 and associated models in 

intricate settings can be enhanced, broadening their range of 

applications and allowing them to showcase robust 

capabilities in more practical situations. 
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