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Hybrid methods have been widely used as one of the strategies in stochastic local search (SLS). 

Simulated Annealing (SA) is one of the SLS method that is commonly used for solving combinatorial 

problem. In this study, we propose a new hybrid SA that consists of nested SA by performing fast SA 

and slow SA consistently, known as Hierarchical Simulated Annealing (HSA). To perform HSA, cooling 

schedule at each level of SA hierarchy needs to be considered. The proposed temperature setting 

indicates improvement in search space exploration, whether searching around local minima or move to 

another region. Then, the HSA ideas discussed are tested on the Quadratic Assignment Problem (QAP). 

The experimental result shows that the performance of HSA is better than SA variants on tested QAP 

instances, especially on class i instances, due to different search space exploration methods. 
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I. INTRODUCTION 
 
The idea of Simulated Annealing (SA) algorithm that was 

proposed by Kirkpatrick et al. (1983) originates from 

Metropolis condition Metropolis et al. (1953). To avoid 

early convergence at the beginning of a search, Metropolis 

et al. (1953) have introduced an efficient diversification 

strategy. In their study, the probability of accepting a worse 

solution at the beginning of the search is high, due to the 

high temperature used. In this way, more neighbors will be 

accepted at the beginning of a search to avoid early 

stagnation. According to Eglese (1990), SA can be easily 

hybridized with another Stochastic Local Search algorithm 

(SLS) due to the Metropolis condition with strong 

diversification strategy. He concludes that SA can provide a 

good initial solution and can improve a solution provided 

by another SLS. Due to the outstanding performance of SA, 

recent studies have explored the use of SA as part of 

hybridization mechanism. In 2006, Pedamallu & Ozdamar 

proposed a hybrid SA with local search algorithm for 

constrained optimisation (Misevičius, 2003). They 

hybridize SA with penalty functions proposed in GAs. In 

addition, the proposed algorithm is integrated with local 

search methods proposed by Zhou & Tits (1996). The 

proposed algorithm has global diversification counter in 

which the stagnation behaviour can be detected through the 

search. Other examples are hybrid SA and Tabu Search 

(Lundy & Mees, 1986), hybrid SA and direct search (Hedar 

& Fukushima, 2001), hybrid SA and Pattern Search (Hedar 

& Fukushima, 2004), etc. 

In this work, we study the behaviour of the cooling 

schedule of SA for solving the QAP. Then, we expanded the 

idea of a cooling schedule by proposing a new hybrid SA. 

This SA hybrid is based on the idea of the Hierarchical 

Iterated Local Search (HILS) by Hussin & Stützle (2009). It 

consists of nested SA by performing fast and slow SA 

consistently, known as Hierarchical Simulated Annealing 

(HSA). We examined the cooling schedule at each level of 

SA hierarchy. Then, the proposed algorithm is tested on 

QAP instances. The HSA performance is compared to SA 

variants on selected QAP instances.  

 

II. QUADRATIC ASSIGNMENT 
PROBLEM 

 
In recent decades, researchers have become increasingly 
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interested in studying the QAP (Burkard, 1998). To date, 

there remain many unanswered questions about QAP due 

to its complexity (Sahni & Gonzalez, 1976). Hospital layout 

problem (Hahn & Krarup, 2001) is a classical QAP 

example. Given a pair of 𝑛 × 𝑛 matrices, where the first 

matrix, 𝑎𝑖𝑗 represents the distance between locations𝑖 and 

𝑗, and the second matrix, 𝑏𝑘𝑙 represents the amount of 

flow between facilities 𝑘 and 𝑙. Given the distances 

between the locations and flows between the facilities, 

QAP can be defined as the problem of assigning a set of 

facilities to a set of locations. The objective function of the 

QAP can be formulated as follows:  

𝑀𝑖𝑛  𝑓(𝜙) =  ∑ ∑ 𝑎𝑖𝑗 . 𝑏ɸ(𝑖)ɸ(𝑗)

𝑛

𝑖=1

𝑛

𝑗=1

,        (1) 

where ɸ is an arbitrary permutation of the set of integers 

{1, … , 𝑛} and ɸ(𝑖) is the location of facility 𝑖 in ɸ. 

Intuitively, 𝑎𝑖𝑗 ∙ 𝑏ɸ(𝑖)ɸ(𝑗) represents the cost contribution of 

simultaneously assigning facility 𝑖to location ɸ(𝑖) and 

facility 𝑗 to location ɸ(𝑗). The objective of the QAP is to 

find the lowest total cost contributed by the function 

(Shahrin & Hussin, 2018). 

 

III. BENCHMARK INSTANCES 

In this study, we used four different class problems based 

on the QAPLIB instances 

(http://anjos.mgi.polymtl.ca/qaplib/). Class(i) refers to 

unstructured randomly generated instances. The instances 

consist of 𝑛1 × 𝑛2 square matrix. The entries in the matrix 

are generated randomly. Class(ii) refers to instances with 

grid-based distance matrix. This instance is formed by 

Manhattan distance on a grid. Class(iii) instances refers to 

Real-life instances. This instance has many zero and 

uniformly distributed entries. Class(iv) instances consists 

of Real-life-like instances. Instances in this class are 

randomly generated from a uniform distribution. 

 

 

  

IV. SIMULATED ANNEALING 
ALGORITHM 

 

Originally, Simulated Annealing refers to the metal 

annealing process, from high temperature (melting point) 

and slowly decreases until equilibrium (solid state). In 

fact, Kirkpatrick et al. (1983) is one of the researchers who 

started using SA to solve combinatorial optimization 

problems. Starting from 1984, researchers have studied 

the implementation of SA for solving the QAP (Misevičius, 

2003). Connolly (1990) proposed an improvement of 

annealing scheme for QAP. The study carried out by 

Connolly revealed that SA is one of the powerful methods 

for QAP. Connolly concludes that the performance of SA is 

optimized at a fixed amount of temperature that need to 

be considered. Due to the SA structure that is rather 

simple to build, it has been used for solving many 

combinatorial problems such as facility layout problem 

(Allahyari & Azab, 2017) trailer routing problem (Lin et 

al., 2011), course timetabling problem (Bellio et al., 2016), 

etc. The basic SA algorithm can be described as follows:  

Procedure Simulated Annealing 

𝑆 = RandomInitialSolution 

𝑇 = Initial Temperature (𝑆) 

      repeat 

𝑆’= Sequential Neighbor search (𝑆, 𝑇) 

𝑆 = Acceptance Test (𝑆, 𝑆’, 𝑇) 

𝑇 = Temperature Updated (𝑇) 

 If𝑡𝑐 < 𝑡𝑓 

  T = Temperature Restart (𝑇) 

End if 

while termination condition not met 

End Simulated Annealing 

Figure 1: Outline of an SA algorithm 

 

First, SA constructs an initial solution by arranging all 

items at random. The solution will be set as current 

solution, 𝑆. Then, 𝑆 will be used to calculate the initial 

temperature, 𝑡𝑐. The final temperature, 𝑡𝑓 is set to 1 to 

ensure that the temperature is converge before 

restart. The main part of SA, new solutions 𝑆′ is generated 

based on current solutions 𝑆 by performing pairwise 

http://anjos.mgi.polymtl.ca/qaplib/
http://anjos.mgi.polymtl.ca/qaplib/
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exchange. Then, the new solution will be tested whether to 

be accepted or rejected. This acceptance test is based on 

Metropolis condition as follows: 

𝐹(∆𝑓) =  {
       1,         ∆𝑓 ≤ 0,   

𝑒−
∆𝑓

𝑡  ,     ∆𝑓 ≥ 0,
            (2) 

 
where t is the current temperature and ∆𝑓 is the difference 

in objective function value between the current solution 𝑆 

and the new solution 𝑆′. Then, the temperature is updated. 

The temperature will decrease until the minimum 

temperature is reached and then it is restarted back to the 

initial temperature. The procedure will be repeated until 

the termination condition is reached.  

 

V. HIERARCHICAL SIMULATED 
ANNEALING  

 

In this study, we propose a new SA hybrid to solve the QAP. 

In some sense, we hybridize an SA with itself (HSA). The 

idea of HSA originates from Hierarchical Iterated Local 

Search (HILS) proposed by Hussin & Stützle (2009). We 

replaced Temperature Restart function in Figure 1 with 

another SA. The outline of the HSA is shown in Figure 2. 

We provide a fast SA for inner HSA loop. In this case, the 

search will focus on a certain region with a smaller search 

radius. While for the outer loop of HSA, we use a slow SA 

with high temperatures at the beginning of the search. The 

search will easily move from one region to another in the 

search space.  

To develop the HSA, temperature setting at each level of 

SA hierarchy needs to be considered. In fact, 

temperature is one of the main factors that influence the 

search process of the algorithm. At present, many 

temperature setting strategies have been introduced.  

Each strategy has its own advantage that depends on the 

structure of the problem to be solved. 

 

 

 

 

 

 

 

Procedure Simulated Annealing 

𝑆 = RandomInitialSolution 

𝑇 = Initial Temperature (𝑆) 

      repeat 

𝑆’= Sequential Neighbor search (𝑆, 𝑇) 

𝑆= Acceptance Test (𝑆, 𝑆’, 𝑇) 

𝑇 = Temperature Updated (𝑇) 

 If𝑡𝑐 < 𝑡𝑓 

  𝑆’ = SA (𝑆’) 

End if 

while termination condition not met 

End Simulated Annealing 

Figure 2: Outline of HSA algorithm 

Two common cooling schedules used in SA: geometric 

cooling schedules proposed by Kirkpatrick et al. (1983), 

𝑡𝑘+1 =  α · 𝑡𝑘,   𝑘 =  0, 1, … , 𝐼𝑡𝑚𝑎𝑥, α < 1,         (3) 

and the one of Lundy and Mees (1986), 

𝑡𝑘+1 =
𝑡𝑘

(1 +  𝛽𝑡𝑘)
,                        (4) 

𝑘 =  0, 1, … , 𝐼𝑡𝑚𝑎𝑥,   𝛽 =  (𝑡𝑖 − 𝑡𝑓/ (𝑀𝑡𝑖𝑡𝑓), 

where 𝐼𝑡𝑚𝑎𝑥 is the maximum iteration, α is constant 

parameter, 𝑡𝑖 is initial temperature and 𝑡𝑓 is final 

temperature. Then, each temperature is set constant for 𝑐 ∙

𝑛 consecutive swaps, where 𝑐 is a constant parameter and n 

is the size of the instance. According to Hussin & Stützle 

(2009), 𝑐 = 100 is the most appropriate based on several 

experiments done. The original geometric cooling schedule 

converges at𝑡 = 0. With some modifications, SA will 

converge at any point rather than 0. The modified 

geometric cooling schedules is as follows: 

𝑇𝑘  =  (𝑇𝑖– 𝑇𝑓  +  1) ∙  (𝛼)𝑘   +  𝑇𝑓–  1, 𝛼 <  1, (4) 

Different temperature setting is used at each HSA level. 

The initial temperature is calculated as:𝑡𝑖 =  𝑝 ·  ∆𝑓(𝑍)𝑄, 

where ∆𝑓(𝑍) is the 𝑄 difference of the objective function 

obtained from 𝑘 random interchange (𝑄 is the third quartile 

from 𝑘, where 𝑘 = 100) and 𝑝 is a constant parameter. The 

final temperature is set at 𝑡𝑓 = 𝑝 · 𝑡𝑖. At the first level of 

HSA, we calculate outer 𝑡𝑖  by setting 𝑝 > 80. Then, the 

temperature will decrease slowly. In this situation, each 

temperature will be remains constant longer (where 𝑐 >

80). Then, we calculate outer 𝑡𝑓 by setting 𝑝 < 30. For the 

second level of HSA, the inner 𝑡𝑖 is determined based on the 
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first level of the HSA. In this case, 𝑡𝑓 for the first level will 

be used as 𝑡𝑖 for the second level.  

 

 

Figure 3. Comparison between SA and HSA annealing 

schemes 

 

Then, we applied fast cooling schedule, where the 

temperature decrease is relatively fast (𝑐 < 30). The inner 

loops will terminate after 0.3 ∙ 𝑛 iteration. Figure 3 shows 

the comparison between SA and HSA annealing schemes. 

We can see that in the same number of iterations, HSA will 

go through a more frequent temperature changes, thus 

provides higher chance for improvement by searching for 

solutions in more confined space. 

 

VI. EXPERIMENTS 
 

In this section, we experimentally evaluate the performance 

of various SA algorithm on QAP instances. All the 

experiments have been run on Intel core i3 3.30 GHz quad-

core CPU with 4 GB RAM running under classic Ubuntu 

16.04. On each instance, a total of 30 trials are conducted 

and the stopping criteria for the experiment was based on n 

· 106 iteration. We set the termination of the algorithm 

based on iteration due to running multiple tasks at the 

same CPU.  

A. Fast vs Slow Annealing 

An experiment was carried out to study the behaviour of 

different Annealing schemes on QAPLIB instances. Table 1 

shows the experimental results of SA with different 

annealing scheme. The results are recorded in terms of 

percentage deviation (%𝑑𝑒𝑣) to the best known results 

published in QAPLIB: %𝑑𝑒𝑣 =  (𝐴 –  𝐵) / 𝐵 × 100%, where 

A is the objective function obtained from the experiment, 

while B is the objective function for the best known solution 

publish from QAPLIB. 

We implement SA with various annealing schemes. Each 

SA follows the procedure in Section 3. Three annealing 

variants with different initial temperatures and cooling 

schedules have been studied. For all the SA variants, only 

two parameters need to be set: the parameter of initial 

temperature and the parameter of cooling schedule (final 

temperature is set to 1 for all SA variants). The initial 

temperature and cooling schedule are calculated based on 

the formula described in Section 4. We set the first SA 

variant as SAs, SA with a slow annealing scheme by setting 

parameter𝑝 = 1. Then, each of the temperature will be 

retained for 𝑐 ∙ 𝑛 consecutive swaps, where 𝑐 = 100. The 

next variant is SAn (SA with normal annealing scheme), the 

initial temperature is calculated same as SAs but using 

different parameter 𝑝, where 𝑝 = 0.5. Then, the parameter 

in the cooling schedule will be set as 𝑐 = 50. The last one is 

SAf, SA with a fast annealing scheme. We set parameters 

𝑝 = 0.1 and 𝑐 = 10 as the parameters of 𝑡𝑖 and cooling 

schedule.  

Table 1 shows the result of the comparison between SA 

variants. For the class(i) instances, SAf shows the best 

performances among the three SA variants, where it 

performs well on all tested instances. Followed by SAs and 

SAm where the performance of the two SA variants is close 

to each other. We can see that, class(i) problem is more 

appropriate to be solved by using fast annealing. Using a 

fast cooling schedule, the search process will focus on a 

smaller region in the search space. SAs shows the best 

performance on class(ii) instances, where it performs well 

on 3 out of 4 tested instances. Then, it is followed by SAf 

that performs well on 1 out of 4 and SAm the worst. In this 

case, we can assume that the use of different cooling 

schedules (fast and slow SA) has slightly affect SA 

performance on class ii instances. For the real-life 
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(class(iii)) instances, SAm shows the best results, followed 

by SAs and SAf the worst. Class iv instances was generated 

based on class(iii) instances. Since most of the class iii 

instances available from QAPLIB are of small size, this 

might also contribute to the difference in the results 

obtained. When solving class iv instances with large 

instances size, more obvious difference can be seen. On 

class(iv)instances, SAs is the best where it performs well on 

4 out of 4 instances tested. Then, followed by SAm that 

performs well on 1 out of 4 instances tested and SAf is the 

worst. We can conclude that SA with fast cooling schedule 

performs well when solving class(i) instances. On class(iii) 

and (iv), slow cooling schedule should be considered. 

 

Table 1. Experimental results for the comparison between SA variants. The best results are in bold 

Instance 
Best 

Known 

%dev 
Instance 

Best  
Known 

%dev 

SAf SAm SAs SAf SAm SAs 

tai50a 4938796 1.448 1.921 1.797 kra30a 88900 0.268 0.000 0.000 

tai60a 7205962 1.453 2.069 1.928 kra30b 91420 0.000 0.000 0.003 

tai80a 13499184 1.591 2.217 2.016 ste36a 9526 0.008 0.003 0.003 

tai100a 21052466 1.347 2.132 2.007 ste36b 15852 0.000 0.000 0.000 

sko72 66256 0.085 0.118 0.078 tai50b 458821517 0.699 0.119 0.007 

sko82 90998 0.076 0.114 0.085 tai60b 608215054 1.064 0.001 0.001 

sko90 115534 0.116 0.146 0.108 tai80b 818415043 0.855 0.103 0.055 

sko100a 152002 0.138 0.147 0.114 tai100b 1185996137 0.377 0.086 0.070 

 

B. Performance of Hierarchical SA 

In this section, we compare the performance of SA and 

HSA. The implementation of SA and HSA follow the 

procedure in Section 3 and Section 4. Table 2 and Table 3 

shows the experimental results of the comparison. For 

HSA, we combine fast SA and slow SA based on previous 

experiments. We provide a slow annealing for outer loop of 

HSA. In this case, we use a high temperature at the 

beginning of the search where parameter 𝑝 = 1 (applied on 

outer 𝑡𝑖). Then, we applied modified geometric 

coolingschedules according to Formula (4). The parameters 

in which the temperature will be retained is set to𝑐 = 100. 

The algorithm will focus more on diversification rather than 

intensification. For inner loop of HSA, a fast annealing 

scheme is provided. We use lower initial temperature where 

𝑝 = 0.1 (applied on outer𝑡𝑓and inner𝑡𝑖).  and fast cooling 

schedule wherec = 10. In this way, the search process is 

more focused on smaller regions in the search space. Then, 

the final temperature for inner SA is set to 𝑡𝑓 = 1. In this 

experiment, the proposed HSA is tested using the QAP  

 

instances. Instances used in the first experiment (Table 2) 

are taken from the QAPLIB. Table 2 shows that HSA 

performs well on class(i), where it shows good performance 

on all tested instances. When it comes to class(ii) and 

class(iv), the HSA only works well on a small-sized 

instance. The HSA shows a good performance on 2 out of 4 

tested instances for class ii and 1 out of 4 tested instances 

for class(iv). While for class(iii) instances, HSA performs 

well on all instance. Since the size of class iii instances is 

small, it easy to solve. For the second experiment (Table 3), 

we used a class of instances used by Hussin & Stützle 

(2009). Since the instances in QAPLIB are limited, we 

include this instance set to study the results on instances 

with different characteristics. The performance of HSA is 

very impressive. HSA has obtained the lowest average 

objective function on all instances. 
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Table 2. Experimental result for the comparison between SA and HSA for QAP instances. The best results are in bold 

Instance 
Best 

Known 
%dev 

Instance 
Best 

 Known 
%dev 

SA HSA SA HSA 

tai50a 4938796 1.797 1.365 kra30a 88900 0.000 0.000 
tai60a 7205962 1.928 1.463 kra30b 91420 0.003 0.000 
tai80a 13499184 2.016 1.538 ste36a 9526 0.003 0.000 
tai100a 21052466 2.007 1.447 ste36b 15852 0.000 0.000 
sko72 66256 0.078 0.068 tai50b 458821517 0.007 0.005 
sko82 90998 0.085 0.078 tai60b 608215054 0.001 0.008 
sko90 115534 0.108 0.109 tai80b 818415043 0.055 0.140 
sko100a 152002 0.114 0.134 tai100b 1185996137 0.070 0.172 

 

Table 3. Experimental result for the comparison between SA and HSA for new instances used by Hussin & Stützle (2009). 

The best results are in bold 

Instance 
Best 

Known 
%dev 

Instance 
Best 

Known 
%dev 

SA HSA SA HSA 

Eu40.00 1862584 1.525 0.516 Eu60.00 5032740 2.101 0.958 
Eu40.33 896208 1.900 0.281 Eu60.33 2813754 1.836 0.789 
Eu40.66 416236 1.308 0.738 Eu60.66 1268680 4.668 1.410 
Eu40.90 79614 0.795 0.605 Eu60.90 242722 6.175 4.616 
Eu50.00 3749244 1.511 1.501 Eu80.00 10784164 2.962 1.546 
Eu50.33 1695648 2.408 1.490 Eu80.33 4875086 2.625 1.198 
Eu50.66 854174 3.353 1.944 Eu80.66 2518556 5.301 3.470 
Eu50.90 196738 8.572 7.862 Eu80.90 391560 5.585 2.859 

 

 

VII. CONCLUSION 
 

In this study, we propose a new SA hybrid that consists of 

nested SA known as Hierarchical Simulated Annealing. Since 

well-known annealing scheme does not fit in HSA due to the 

different temperature setting used at each hierarchy level, 

the new annealing scheme is proposed. Various experiments 

have been conducted to study the behaviour of annealing 

schemes proposed. The experiment shows that fast annealing 

is better than slow annealing on class i QAPLIB instances. 

However, slow SA shows a better performance than fast SA 

on class iii and iv QAP instances. We can conclude that 

annealing scheme should be considered when tackling 

different QAP classes. An experiment has been run where 

HSA proposed are compared with SA. the performance of 

HSA is better than SA on most QAP instances from QAPLIB. 

In addition, HSA has obtained the lowest average objective 

function on all instances used by Hussin & Stützle (2009). 

One of the reasons is that the search process used by SA is 

less focused on local minimum where the temperature restart 

is high. This study can be extended by having more levels of 

hierarchy to solve hard QAP instances. Another option is to 

use various neighbourhood search strategy such as k-

exchange, insertion, inversion, and others on each 

hierarchy level. 
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