
*Corresponding author’s e-mail: shahshahhiha@gmail.com

ASM Sci. J., Special Issue 6, 2019 for SKSM26, 143-150

Hierarchical Simulated Annealing for the Quadratic
Assignment Problem

Shah Haziq Shahrin and Mohamed Saifullah Hussin

School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu,

20130 Kuala Nerus, Terengganu, Malaysia

Hybrid methods have been widely used as one of the strategies in stochastic local search (SLS).

Simulated Annealing (SA) is one of the SLS method that is commonly used for solving combinatorial

problem. In this study, we propose a new hybrid SA that consists of nested SA by performing fast SA

and slow SA consistently, known as Hierarchical Simulated Annealing (HSA). To perform HSA, cooling

schedule at each level of SA hierarchy needs to be considered. The proposed temperature setting

indicates improvement in search space exploration, whether searching around local minima or move to

another region. Then, the HSA ideas discussed are tested on the Quadratic Assignment Problem (QAP).

The experimental result shows that the performance of HSA is better than SA variants on tested QAP

instances, especially on class i instances, due to different search space exploration methods.

Keywords: hybrid stochastic local search; simulated annealing; quadratic assignment problem

I. INTRODUCTION

The idea of Simulated Annealing (SA) algorithm that was

proposed by Kirkpatrick et al. (1983) originates from

Metropolis condition Metropolis et al. (1953). To avoid

early convergence at the beginning of a search, Metropolis

et al. (1953) have introduced an efficient diversification

strategy. In their study, the probability of accepting a worse

solution at the beginning of the search is high, due to the

high temperature used. In this way, more neighbors will be

accepted at the beginning of a search to avoid early

stagnation. According to Eglese (1990), SA can be easily

hybridized with another Stochastic Local Search algorithm

(SLS) due to the Metropolis condition with strong

diversification strategy. He concludes that SA can provide a

good initial solution and can improve a solution provided

by another SLS. Due to the outstanding performance of SA,

recent studies have explored the use of SA as part of

hybridization mechanism. In 2006, Pedamallu & Ozdamar

proposed a hybrid SA with local search algorithm for

constrained optimisation (Misevičius, 2003). They

hybridize SA with penalty functions proposed in GAs. In

addition, the proposed algorithm is integrated with local

search methods proposed by Zhou & Tits (1996). The

proposed algorithm has global diversification counter in

which the stagnation behaviour can be detected through the

search. Other examples are hybrid SA and Tabu Search

(Lundy & Mees, 1986), hybrid SA and direct search (Hedar

& Fukushima, 2001), hybrid SA and Pattern Search (Hedar

& Fukushima, 2004), etc.

In this work, we study the behaviour of the cooling

schedule of SA for solving the QAP. Then, we expanded the

idea of a cooling schedule by proposing a new hybrid SA.

This SA hybrid is based on the idea of the Hierarchical

Iterated Local Search (HILS) by Hussin & Stützle (2009). It

consists of nested SA by performing fast and slow SA

consistently, known as Hierarchical Simulated Annealing

(HSA). We examined the cooling schedule at each level of

SA hierarchy. Then, the proposed algorithm is tested on

QAP instances. The HSA performance is compared to SA

variants on selected QAP instances.

II. QUADRATIC ASSIGNMENT
PROBLEM

In recent decades, researchers have become increasingly

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

144

interested in studying the QAP (Burkard, 1998). To date,

there remain many unanswered questions about QAP due

to its complexity (Sahni & Gonzalez, 1976). Hospital layout

problem (Hahn & Krarup, 2001) is a classical QAP

example. Given a pair of 𝑛 × 𝑛 matrices, where the first

matrix, 𝑎𝑖𝑗 represents the distance between locations𝑖 and

𝑗, and the second matrix, 𝑏𝑘𝑙 represents the amount of

flow between facilities 𝑘 and 𝑙. Given the distances

between the locations and flows between the facilities,

QAP can be defined as the problem of assigning a set of

facilities to a set of locations. The objective function of the

QAP can be formulated as follows:

𝑀𝑖𝑛 𝑓(𝜙) = ∑ ∑ 𝑎𝑖𝑗 . 𝑏ɸ(𝑖)ɸ(𝑗)

𝑛

𝑖=1

𝑛

𝑗=1

, (1)

where ɸ is an arbitrary permutation of the set of integers

{1, … , 𝑛} and ɸ(𝑖) is the location of facility 𝑖 in ɸ.

Intuitively, 𝑎𝑖𝑗 ∙ 𝑏ɸ(𝑖)ɸ(𝑗) represents the cost contribution of

simultaneously assigning facility 𝑖to location ɸ(𝑖) and

facility 𝑗 to location ɸ(𝑗). The objective of the QAP is to

find the lowest total cost contributed by the function

(Shahrin & Hussin, 2018).

III. BENCHMARK INSTANCES

In this study, we used four different class problems based

on the QAPLIB instances

(http://anjos.mgi.polymtl.ca/qaplib/). Class(i) refers to

unstructured randomly generated instances. The instances

consist of 𝑛1 × 𝑛2 square matrix. The entries in the matrix

are generated randomly. Class(ii) refers to instances with

grid-based distance matrix. This instance is formed by

Manhattan distance on a grid. Class(iii) instances refers to

Real-life instances. This instance has many zero and

uniformly distributed entries. Class(iv) instances consists

of Real-life-like instances. Instances in this class are

randomly generated from a uniform distribution.

IV. SIMULATED ANNEALING
ALGORITHM

Originally, Simulated Annealing refers to the metal

annealing process, from high temperature (melting point)

and slowly decreases until equilibrium (solid state). In

fact, Kirkpatrick et al. (1983) is one of the researchers who

started using SA to solve combinatorial optimization

problems. Starting from 1984, researchers have studied

the implementation of SA for solving the QAP (Misevičius,

2003). Connolly (1990) proposed an improvement of

annealing scheme for QAP. The study carried out by

Connolly revealed that SA is one of the powerful methods

for QAP. Connolly concludes that the performance of SA is

optimized at a fixed amount of temperature that need to

be considered. Due to the SA structure that is rather

simple to build, it has been used for solving many

combinatorial problems such as facility layout problem

(Allahyari & Azab, 2017) trailer routing problem (Lin et

al., 2011), course timetabling problem (Bellio et al., 2016),

etc. The basic SA algorithm can be described as follows:

Procedure Simulated Annealing

𝑆 = RandomInitialSolution

𝑇 = Initial Temperature (𝑆)

 repeat

𝑆’= Sequential Neighbor search (𝑆, 𝑇)

𝑆 = Acceptance Test (𝑆, 𝑆’, 𝑇)

𝑇 = Temperature Updated (𝑇)

 If𝑡𝑐 < 𝑡𝑓

 T = Temperature Restart (𝑇)

End if

while termination condition not met

End Simulated Annealing

Figure 1: Outline of an SA algorithm

First, SA constructs an initial solution by arranging all

items at random. The solution will be set as current

solution, 𝑆. Then, 𝑆 will be used to calculate the initial

temperature, 𝑡𝑐. The final temperature, 𝑡𝑓 is set to 1 to

ensure that the temperature is converge before

restart. The main part of SA, new solutions 𝑆′ is generated

based on current solutions 𝑆 by performing pairwise

http://anjos.mgi.polymtl.ca/qaplib/
http://anjos.mgi.polymtl.ca/qaplib/

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

145

exchange. Then, the new solution will be tested whether to

be accepted or rejected. This acceptance test is based on

Metropolis condition as follows:

𝐹(∆𝑓) = {
 1, ∆𝑓 ≤ 0,

𝑒−
∆𝑓

𝑡 , ∆𝑓 ≥ 0,
 (2)

where t is the current temperature and ∆𝑓 is the difference

in objective function value between the current solution 𝑆

and the new solution 𝑆′. Then, the temperature is updated.

The temperature will decrease until the minimum

temperature is reached and then it is restarted back to the

initial temperature. The procedure will be repeated until

the termination condition is reached.

V. HIERARCHICAL SIMULATED
ANNEALING

In this study, we propose a new SA hybrid to solve the QAP.

In some sense, we hybridize an SA with itself (HSA). The

idea of HSA originates from Hierarchical Iterated Local

Search (HILS) proposed by Hussin & Stützle (2009). We

replaced Temperature Restart function in Figure 1 with

another SA. The outline of the HSA is shown in Figure 2.

We provide a fast SA for inner HSA loop. In this case, the

search will focus on a certain region with a smaller search

radius. While for the outer loop of HSA, we use a slow SA

with high temperatures at the beginning of the search. The

search will easily move from one region to another in the

search space.

To develop the HSA, temperature setting at each level of

SA hierarchy needs to be considered. In fact,

temperature is one of the main factors that influence the

search process of the algorithm. At present, many

temperature setting strategies have been introduced.

Each strategy has its own advantage that depends on the

structure of the problem to be solved.

Procedure Simulated Annealing

𝑆 = RandomInitialSolution

𝑇 = Initial Temperature (𝑆)

 repeat

𝑆’= Sequential Neighbor search (𝑆, 𝑇)

𝑆= Acceptance Test (𝑆, 𝑆’, 𝑇)

𝑇 = Temperature Updated (𝑇)

 If𝑡𝑐 < 𝑡𝑓

 𝑆’ = SA (𝑆’)

End if

while termination condition not met

End Simulated Annealing

Figure 2: Outline of HSA algorithm

Two common cooling schedules used in SA: geometric

cooling schedules proposed by Kirkpatrick et al. (1983),

𝑡𝑘+1 = α · 𝑡𝑘, 𝑘 = 0, 1, … , 𝐼𝑡𝑚𝑎𝑥, α < 1, (3)

and the one of Lundy and Mees (1986),

𝑡𝑘+1 =
𝑡𝑘

(1 + 𝛽𝑡𝑘)
, (4)

𝑘 = 0, 1, … , 𝐼𝑡𝑚𝑎𝑥, 𝛽 = (𝑡𝑖 − 𝑡𝑓/ (𝑀𝑡𝑖𝑡𝑓),

where 𝐼𝑡𝑚𝑎𝑥 is the maximum iteration, α is constant

parameter, 𝑡𝑖 is initial temperature and 𝑡𝑓 is final

temperature. Then, each temperature is set constant for 𝑐 ∙

𝑛 consecutive swaps, where 𝑐 is a constant parameter and n

is the size of the instance. According to Hussin & Stützle

(2009), 𝑐 = 100 is the most appropriate based on several

experiments done. The original geometric cooling schedule

converges at𝑡 = 0. With some modifications, SA will

converge at any point rather than 0. The modified

geometric cooling schedules is as follows:

𝑇𝑘 = (𝑇𝑖– 𝑇𝑓 + 1) ∙ (𝛼)𝑘 + 𝑇𝑓– 1, 𝛼 < 1, (4)

Different temperature setting is used at each HSA level.

The initial temperature is calculated as:𝑡𝑖 = 𝑝 · ∆𝑓(𝑍)𝑄,

where ∆𝑓(𝑍) is the 𝑄 difference of the objective function

obtained from 𝑘 random interchange (𝑄 is the third quartile

from 𝑘, where 𝑘 = 100) and 𝑝 is a constant parameter. The

final temperature is set at 𝑡𝑓 = 𝑝 · 𝑡𝑖. At the first level of

HSA, we calculate outer 𝑡𝑖 by setting 𝑝 > 80. Then, the

temperature will decrease slowly. In this situation, each

temperature will be remains constant longer (where 𝑐 >

80). Then, we calculate outer 𝑡𝑓 by setting 𝑝 < 30. For the

second level of HSA, the inner 𝑡𝑖 is determined based on the

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

146

first level of the HSA. In this case, 𝑡𝑓 for the first level will

be used as 𝑡𝑖 for the second level.

Figure 3. Comparison between SA and HSA annealing

schemes

Then, we applied fast cooling schedule, where the

temperature decrease is relatively fast (𝑐 < 30). The inner

loops will terminate after 0.3 ∙ 𝑛 iteration. Figure 3 shows

the comparison between SA and HSA annealing schemes.

We can see that in the same number of iterations, HSA will

go through a more frequent temperature changes, thus

provides higher chance for improvement by searching for

solutions in more confined space.

VI. EXPERIMENTS

In this section, we experimentally evaluate the performance

of various SA algorithm on QAP instances. All the

experiments have been run on Intel core i3 3.30 GHz quad-

core CPU with 4 GB RAM running under classic Ubuntu

16.04. On each instance, a total of 30 trials are conducted

and the stopping criteria for the experiment was based on n

· 106 iteration. We set the termination of the algorithm

based on iteration due to running multiple tasks at the

same CPU.

A. Fast vs Slow Annealing

An experiment was carried out to study the behaviour of

different Annealing schemes on QAPLIB instances. Table 1

shows the experimental results of SA with different

annealing scheme. The results are recorded in terms of

percentage deviation (%𝑑𝑒𝑣) to the best known results

published in QAPLIB: %𝑑𝑒𝑣 = (𝐴 – 𝐵) / 𝐵 × 100%, where

A is the objective function obtained from the experiment,

while B is the objective function for the best known solution

publish from QAPLIB.

We implement SA with various annealing schemes. Each

SA follows the procedure in Section 3. Three annealing

variants with different initial temperatures and cooling

schedules have been studied. For all the SA variants, only

two parameters need to be set: the parameter of initial

temperature and the parameter of cooling schedule (final

temperature is set to 1 for all SA variants). The initial

temperature and cooling schedule are calculated based on

the formula described in Section 4. We set the first SA

variant as SAs, SA with a slow annealing scheme by setting

parameter𝑝 = 1. Then, each of the temperature will be

retained for 𝑐 ∙ 𝑛 consecutive swaps, where 𝑐 = 100. The

next variant is SAn (SA with normal annealing scheme), the

initial temperature is calculated same as SAs but using

different parameter 𝑝, where 𝑝 = 0.5. Then, the parameter

in the cooling schedule will be set as 𝑐 = 50. The last one is

SAf, SA with a fast annealing scheme. We set parameters

𝑝 = 0.1 and 𝑐 = 10 as the parameters of 𝑡𝑖 and cooling

schedule.

Table 1 shows the result of the comparison between SA

variants. For the class(i) instances, SAf shows the best

performances among the three SA variants, where it

performs well on all tested instances. Followed by SAs and

SAm where the performance of the two SA variants is close

to each other. We can see that, class(i) problem is more

appropriate to be solved by using fast annealing. Using a

fast cooling schedule, the search process will focus on a

smaller region in the search space. SAs shows the best

performance on class(ii) instances, where it performs well

on 3 out of 4 tested instances. Then, it is followed by SAf

that performs well on 1 out of 4 and SAm the worst. In this

case, we can assume that the use of different cooling

schedules (fast and slow SA) has slightly affect SA

performance on class ii instances. For the real-life

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

147

(class(iii)) instances, SAm shows the best results, followed

by SAs and SAf the worst. Class iv instances was generated

based on class(iii) instances. Since most of the class iii

instances available from QAPLIB are of small size, this

might also contribute to the difference in the results

obtained. When solving class iv instances with large

instances size, more obvious difference can be seen. On

class(iv)instances, SAs is the best where it performs well on

4 out of 4 instances tested. Then, followed by SAm that

performs well on 1 out of 4 instances tested and SAf is the

worst. We can conclude that SA with fast cooling schedule

performs well when solving class(i) instances. On class(iii)

and (iv), slow cooling schedule should be considered.

Table 1. Experimental results for the comparison between SA variants. The best results are in bold

Instance
Best

Known

%dev
Instance

Best
Known

%dev

SAf SAm SAs SAf SAm SAs

tai50a 4938796 1.448 1.921 1.797 kra30a 88900 0.268 0.000 0.000

tai60a 7205962 1.453 2.069 1.928 kra30b 91420 0.000 0.000 0.003

tai80a 13499184 1.591 2.217 2.016 ste36a 9526 0.008 0.003 0.003

tai100a 21052466 1.347 2.132 2.007 ste36b 15852 0.000 0.000 0.000

sko72 66256 0.085 0.118 0.078 tai50b 458821517 0.699 0.119 0.007

sko82 90998 0.076 0.114 0.085 tai60b 608215054 1.064 0.001 0.001

sko90 115534 0.116 0.146 0.108 tai80b 818415043 0.855 0.103 0.055

sko100a 152002 0.138 0.147 0.114 tai100b 1185996137 0.377 0.086 0.070

B. Performance of Hierarchical SA

In this section, we compare the performance of SA and

HSA. The implementation of SA and HSA follow the

procedure in Section 3 and Section 4. Table 2 and Table 3

shows the experimental results of the comparison. For

HSA, we combine fast SA and slow SA based on previous

experiments. We provide a slow annealing for outer loop of

HSA. In this case, we use a high temperature at the

beginning of the search where parameter 𝑝 = 1 (applied on

outer 𝑡𝑖). Then, we applied modified geometric

coolingschedules according to Formula (4). The parameters

in which the temperature will be retained is set to𝑐 = 100.

The algorithm will focus more on diversification rather than

intensification. For inner loop of HSA, a fast annealing

scheme is provided. We use lower initial temperature where

𝑝 = 0.1 (applied on outer𝑡𝑓and inner𝑡𝑖). and fast cooling

schedule wherec = 10. In this way, the search process is

more focused on smaller regions in the search space. Then,

the final temperature for inner SA is set to 𝑡𝑓 = 1. In this

experiment, the proposed HSA is tested using the QAP

instances. Instances used in the first experiment (Table 2)

are taken from the QAPLIB. Table 2 shows that HSA

performs well on class(i), where it shows good performance

on all tested instances. When it comes to class(ii) and

class(iv), the HSA only works well on a small-sized

instance. The HSA shows a good performance on 2 out of 4

tested instances for class ii and 1 out of 4 tested instances

for class(iv). While for class(iii) instances, HSA performs

well on all instance. Since the size of class iii instances is

small, it easy to solve. For the second experiment (Table 3),

we used a class of instances used by Hussin & Stützle

(2009). Since the instances in QAPLIB are limited, we

include this instance set to study the results on instances

with different characteristics. The performance of HSA is

very impressive. HSA has obtained the lowest average

objective function on all instances.

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

148

Table 2. Experimental result for the comparison between SA and HSA for QAP instances. The best results are in bold

Instance
Best

Known
%dev

Instance
Best

 Known
%dev

SA HSA SA HSA

tai50a 4938796 1.797 1.365 kra30a 88900 0.000 0.000
tai60a 7205962 1.928 1.463 kra30b 91420 0.003 0.000
tai80a 13499184 2.016 1.538 ste36a 9526 0.003 0.000
tai100a 21052466 2.007 1.447 ste36b 15852 0.000 0.000
sko72 66256 0.078 0.068 tai50b 458821517 0.007 0.005
sko82 90998 0.085 0.078 tai60b 608215054 0.001 0.008
sko90 115534 0.108 0.109 tai80b 818415043 0.055 0.140
sko100a 152002 0.114 0.134 tai100b 1185996137 0.070 0.172

Table 3. Experimental result for the comparison between SA and HSA for new instances used by Hussin & Stützle (2009).

The best results are in bold

Instance
Best

Known
%dev

Instance
Best

Known
%dev

SA HSA SA HSA

Eu40.00 1862584 1.525 0.516 Eu60.00 5032740 2.101 0.958
Eu40.33 896208 1.900 0.281 Eu60.33 2813754 1.836 0.789
Eu40.66 416236 1.308 0.738 Eu60.66 1268680 4.668 1.410
Eu40.90 79614 0.795 0.605 Eu60.90 242722 6.175 4.616
Eu50.00 3749244 1.511 1.501 Eu80.00 10784164 2.962 1.546
Eu50.33 1695648 2.408 1.490 Eu80.33 4875086 2.625 1.198
Eu50.66 854174 3.353 1.944 Eu80.66 2518556 5.301 3.470
Eu50.90 196738 8.572 7.862 Eu80.90 391560 5.585 2.859

VII. CONCLUSION

In this study, we propose a new SA hybrid that consists of

nested SA known as Hierarchical Simulated Annealing. Since

well-known annealing scheme does not fit in HSA due to the

different temperature setting used at each hierarchy level,

the new annealing scheme is proposed. Various experiments

have been conducted to study the behaviour of annealing

schemes proposed. The experiment shows that fast annealing

is better than slow annealing on class i QAPLIB instances.

However, slow SA shows a better performance than fast SA

on class iii and iv QAP instances. We can conclude that

annealing scheme should be considered when tackling

different QAP classes. An experiment has been run where

HSA proposed are compared with SA. the performance of

HSA is better than SA on most QAP instances from QAPLIB.

In addition, HSA has obtained the lowest average objective

function on all instances used by Hussin & Stützle (2009).

One of the reasons is that the search process used by SA is

less focused on local minimum where the temperature restart

is high. This study can be extended by having more levels of

hierarchy to solve hard QAP instances. Another option is to

use various neighbourhood search strategy such as k-

exchange, insertion, inversion, and others on each

hierarchy level.

VIII. ACKNOWLEDGEMENT

This work was supported by the Research Management

& Innovation Centre (RMIC) of UMT, funded by

Fundamental Research Grant Scheme (FRGS), Ministry

of Education, Malaysia. Mohamed Saifullah Hussin

acknowledges support from Universiti Malaysia

Terengganu.

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

149

IX. REFERENCES

Allahyari, M. Z., & Azab, A. (2017). Facility Layout Problem

for Cellular Manufacturing Systems. In Computational

Optimization in Engineering-Paradigms and

Applications. InTech.

Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., & Urli, T.

(2016). Feature-based tuning of simulated annealing

applied to the curriculum-based course timetabling

problem. Computers & Operations Research, 65, 83-92.

Burkard, R. E., Çela, E., Pardalos, P. M., & Pitsoulis, L. S.

(1998). The quadratic assignment problem. In Handbook

of combinatorial optimization (pp. 1713-1809). Springer,

Boston, MA.

Connolly, D. T. (1990). An improved annealing scheme for

the QAP. European Journal of Operational

Research, 46(1), 93-100.

Eglese, R. W. (1990). Simulated annealing: a tool for

operational research. European journal of operational

research, 46(3), 271-281.

Hahn, P. M., & Krarup, J. (2001). A hospital facility layout

problem finally solved. Journal of Intelligent

Manufacturing, 12(5-6), 487-496.

Hedar, A., & Fukushima, M. (2001). Hybrid simulated

annealing and direct search method for nonlinear global

optimization. Department of Applied Mathematics &

Physics Kyoto University, 2001-2013.

Hedar, A. R., & Fukushima, M. (2004). Heuristic pattern

search and its hybridization with simulated annealing for

nonlinear global optimization. Optimization Methods and

Software, 19(3-4), 291-308.

Hussin, M. S., & Stützle, T. (2009, October). Hierarchical

iterated local search for the quadratic assignment problem.

In International Workshop on Hybrid Metaheuristics (pp.

115-129). Springer, Berlin, Heidelberg.

Hussin, M. S., & Stützle, T. (2014). Tabu search vs. simulated

annealing as a function of the size of quadratic assignment

problem instances. Computers & operations research, 43,

286-291.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983).

Optimization by simulated

annealing. science, 220(4598), 671-680.

Krarup, J., & Pruzan, P. M. (1978). Computer-aided layout

design. Mathematical programming in use, 75-94.

Lin, S. W., Vincent, F. Y., & Lu, C. C. (2011). A simulated

annealing heuristic for the truck and trailer routing

problem with time windows. Expert Systems with

Applications, 38(12), 15244-15252.

Lundy, M., & Mees, A. (1986). Convergence of an

annealing algorithm. Mathematical

programming, 34(1), 111-124.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,

Teller, A. H., & Teller, E. (1953). Equation of state

calculations by fast computing machines. The journal of

chemical physics, 21(6), 1087-1092.

Misevičius, A. (2003). A modified simulated annealing

algorithm for the quadratic assignment

problem. Informatica, 14(4), 497-514.

Pedamallu, C. S., &Ozdamar, L. (2008). Investigating a

hybrid simulated annealing and local search algorithm

for constrained optimization. European Journal of

Operational Research, 185(3), 1230-1245.

Sahni, S., & Gonzalez, T. (1976). P-complete

approximation problems. Journal of the ACM

(JACM), 23(3), 555-565.

Shahrin, S. H., & Hussin, M. S. (2018). Comparisons of

simulated annealing temperature schedule based on

QAPLIB instances. In AIP Conference Proceedings (Vol.

1974, No. 1, p. 020091). AIP Publishing.

Skorin-Kapov, J. (1990). Tabu search applied to the

quadratic assignment problem. ORSA Journal on

computing, 2(1), 33-45.

Steinberg, L. (1961). The backboard wiring problem: A

placement algorithm. Siam Review, 3(1), 37-50

Taillard, É. D. (1995). Comparison of iterative searches for

the quadratic assignment problem. Location science,

3(2), 87-105.

ASM Science Journal, Volume 12, Special Issue 6, 2019 for SKSM26

150

Zhou, J. L., & Tits, A. L. (1996). An SQP algorithm for finely

discretized continuous minimax problems and other

minimax problems with many objective functions. SIAM

Journal on Optimization, 6(2), 461-4.

