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Bootstrap method is a computer-based technique for making certain kind of statistical inferences 

which can simplify the often intricate calculations of traditional statistical theory.  Recently, 

bootstrapping has been widely used for the parameter estimation of linear data. In this paper, we 

consider bootstrapping methods in the construction of the confidence interval of concentration 

parameter,   for the von Mises distribution. The performances of confidence interval based on 

percentile bootstrap, bootstrap-t and calibration bootstrap are evaluated via simulation study. The 

numerical results found that confidence interval based  on the calibration bootstrap is good in terms 

of coverage probability. Meanwhile, confidence interval based on the bootstrap-t method has a 

shorter expected length. The confidence intervals were illustrated using daily wind direction data 

recorded at maximum wind speed for four stations in Malaysia. From point estimates of the 

concentration parameter and the respective confidence interval, we note that the method works well 

for a wide range of   values. The implication of the study is that confidence interval of the 

concentration parameter can be obtained using bootstrap as it provides good estimates. 

Keywords: bootstrap-t; calibration bootstrap; concentration parameter; percentile bootstrap; von 

Mises distribution 

 

 

I. INTRODUCTION 

 
Bootstrap method is a computer-based technique for making 

certain kind of statistical inferences which can simplify the 

often intricate calculations of traditional statistical theory 

(Efron & Tibshirani, 1993). It substitutes considerable 

amount of computation in place of the theoretical analysis. 

This method was introduced as a nonparametric device for 

estimating standard errors and biases and has been in use 

since 1980s. DiCiccio & Efron (1996) described the types of 

bootstrap used for confidence interval.  Efron and Tibshirani 

(1986) explained the bootstrap estimate of standard error, 

measures of statistical accuracy and bootstrap confidence 

intervals.  Other disciplines use the bootstrap methods in 

analysing their data and these include in biology (Fung, 1996; 

Caccone et al., 1996), physics (Zamolodchikov, 1996), 

economics (Zaher & Featherstone, 2010), geography (Yan et 

al., 2015), medicine (Dwivedi et al., 2017) and hospitality and 

tourism (Azdel et al., 2015). 

Statistical data can be classified according to their 

distributional topologies. A linear data set can be represented 

on a straight line and for circular data, they can be 

represented by the circumference of a circle. For circular 
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data, they are commonly measured in the range of 

 )0 ,360   degrees or  )0,2  radian. It is worthwhile to 

note that statistical theories for straight line and circle are 

very different from one to another because the circle is a 

closed curve. Circular or directional data can be found in the 

area of meteorology, medicine, geology, image analysis and 

astronomy (Mardia, 1972; Mardia & Jupp, 2000).  

Von Mises distribution is said to be the most useful 

distribution in describing circular random variable. The 

density function is given as; 
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the modified Bessel function of order zero and can be defined 
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This is a continuous probability distribution and as   

approaches 0, the distribution converges to the uniform 

distribution. Meanwhile, as   increase, the distribution 

converges to the point distribution concentrated in the 

direction  . Thus, it will approach the normal distribution 

with the mean 
0  and variance 

1


 (Fisher, 1993; Mardia & 

Jupp, 2000). Since then, von Mises distribution can also be 

called as Circular Normal Distribution as it has the 

similarities with the normal distribution on the real line 

(Fisher, 1993).  

In data analysis, confidence interval is often used as they 

combine both point estimate and hypothesis testing into a 

single inferential statement. In other words, confidence 

interval gives an estimated range of values which is likely to 

include an unknown population parameter with a specified 

probability within that interval. A number of studies were 

done to approximate confidence interval for the 

concentration parameter of von Mises distribution including 

those using bootstrap (Stephens, 1969; Khanabsakdi, 1995; 

Hassan et al., 2014). 

 

 

 

II. METHODS 
 

One early method of obtaining confidence interval for 

concentration parameter is using the percentile bootstrap 

method (Fisher, 1993). This approach is further improved 

using bootstrap-t (Hassan et al., 2014). However, the 

bootstrap-t method only limits to the second-order accuracy 

and the algorithm can be numerically unstable (DiCiccio & 

Efron, 1996). Thus, to ensure good coverage accuracy and 

overall expected length, we propose a calibration bootstrap 

method which improves to the third-order accuracy. In this 

study, confidence interval for the concentration parameter 

based on calibration bootstrap will be proposed. The 

confidence interval based on the percentile bootstrap and 

bootstrap-t will be considered as well. The performances of 

the confidence intervals which are coverage probability and 

expected length will be evaluated via simulation study 

(Letson & McCullough, 1998). 

 

A. Confidence Interval based on Percentile 
Bootstrap 

 

Among all the bootstrap methods, percentile bootstrap is 

often and widely used in confidence interval. For circular 

statistics, explanations and guidance in constructing the 

confidence interval for the concentration parameter based 

on percentile bootstrap can be found in Fisher (1993). 

Following are the steps in performing the percentile 

bootstrap method for the simulation purpose: 

Step a: Resampling  

Simulate n values of 
i
  from the ( )ˆˆ ,VM    where 

0 2i    and 1,2, ,i n= . 

Step b: Bootstrap parameter estimate  

Estimate the bootstrap parameter for the bootstrap 

samples from step a and label it as 
1̂ .  

Step c: Repetition  

Repeat step a and b to obtain B bootstrap parameter 

estimates, 
1 2 B
  ˆ ˆ ˆ, , , .  

Step d: Confidence Interval 

(i) Arrange the bootstrap parameter estimates, 

1 2 B
  ˆ ˆ ˆ, , ,  in increasing order:  

( ) ( ) ( )1 2 B
    ˆ ˆ ˆ  
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(ii) The ( )100 1 − %  CI for   is given as:  

( ) ( )( )1l m
 

+
ˆ ˆ,    where 

1 1
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B. Confidence Interval based on Bootstrap-t 
 

Bootstrap-t was proved to be the best method for confidence 

interval for the concentration parameter in terms of coverage 

probability (Hassan et al., 2014). By having the smaller 

coverage error, it could outperform the percentile bootstrap 

and bias corrected and accelerated bootstrap (BCA) method 

(Hall, 1986). The following steps are carried out for the 

simulation purpose: 

Step a: Resampling  

Simulate n values of 
i
  from the ( )ˆˆ ,VM    where 

0 2i    and 1,2, ,i n= . 

Step b: Bootstrap parameter estimate  

(i) Estimate the bootstrap parameter for the bootstrap 

samples from step a and label it as 
1̂ .  

(ii)   Calculate the standard error (SE) for the 

estimated bootstrap parameter and label it as 
1

Ŝ  

where ( )1
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(iii) Calculate the t-value given by 

1
1

1

t
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where 
1

Ŝ  is the estimated standard error of 
1

̂  

based on the data in step a. 

Step c: Repetition 

Repeat step a and b to obtain B bootstrap t-values, 

1 2 B
t t t, , ,  of the concentration parameter.  

 

Step d: Confidence Interval 

(i) Arrange the t-values, 
1 2 B
t t t, , ,  in increasing 

order: 
( ) ( ) ( )1 2 B

t t t    

(ii) The ( )100 1 − %  CI for   is given as:  

( ) ( )( )1
t S t S

 
 

−
− −ˆ ˆ,   

where 
( )1

t
−

 is 1 −  percentile of 
b

t values, 
( )

t


 

is   percentile of 
b

t  values and S is the 

estimated standard error for ̂ . 

 

C. Confidence Interval based on Calibration 
Bootstrap 

 

Calibration is a bootstrap resampling technique that 

performs a second bootstrap loop. Although it is 

computationally intensive, this can be easily overcomed with 

the advancement of technology and supercomputing facilities 

(Lv et al., 2017). DiCiccio & Efron (1996) explained that this 

method was much more stable and lead to the accurate 

intervals.  

Let ( )  p


   =  =ˆ
ˆ ˆProb . Once the value of ̂  is 

obtained and if the procedure is calibrated correctly, the value 

of  =  is achieved.  

Let ( )  p   =  *

*
ˆ ˆˆ Prob  be the bootstrap estimate of 

( )p   where “*” refers to the bootstrap sampling and ̂  is 

fixed. Generate a number of bootstrap samples then compute 


*ˆ  for each one and record the proportion of times that 

  *ˆ ˆ . By using the same bootstrap samples, the process is 

repeated for a range of   values that includes the nominal 

value  . The value of   that satisfy ( )p  =ˆ  is denoted 

by ̂ . 

The following steps describe the calibration 

bootstrap method: 

1. Generate n values of 
i
  from the ( )ˆˆ ,VM    where 

0 2i    and 1,2, ,i n= . 
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2. Estimate the bootstrap parameter for the bootstrap 

samples from step (1) and label it as 
1

̂ . 

3. Repeat step (1) and (2) to obtain B bootstrap 

parameter estimates; 
b̂

  where 1 2, , ,b B= . 

4. For each bootstrap samples, compute a   level 

confidence point ( )*̂ b  for a range of   values. 

5. Get the value of ( ) ( ) *ˆ ˆˆ #p b B  =  for each  . 

6. Find the value of   that satisfy ( ) .p  =  

 

D. Simulation Study 
 

Simulation study were conducted for three different sample 

sizes, 30 50 100,  and n =  with six values of concentration 

parameter, 1 2 3 5 10 15, , , ,  and  = , respectively. Without 

loss of generality, the mean direction value,    will be 

assumed as 0. The significance level for the percentile 

bootstrap and bootstrap-t is set at 0 05. =  meanwhile for 

the calibration bootstrap method is 0 04. = . This has been 

evaluated previously to be the suitable value of   to get the 

probability of 0.95. The number of bootstrap replications, B 

for each simulation is set at 100 (Efron & Tibshirani, 1993). 

Let s be the number of simulation studies and it was repeated 

for 360 times. Two indicators to determine the best method 

in constructing intervals were calculated as follows: 

(a) coverage probability = m
s

 where m is the 

number of true value that fall within the confidence 

interval. 

(b) expected length = upper limit - lower limit. 

 

Coverage probability is the proportion number that the 

confidence interval contains the true value of concentration 

parameter for each method. The confidence level considered 

in this study is 95% . Thus, the best result is measured 

through the coverage probability value that is close to 0.95. 

Expected length is the class size of a confidence interval. It is 

another indicator to determine the best method of 

constructing the confidence interval. The best and efficient 

method will give the shortest expected length. 

 

III. RESULTS AND DISCUSSIONS 
 

Table 1 and Table 2 display the results of coverage probability 

and expected length for all values of sample size, n and 

concentration parameter,  for each method, respectively. 

Each method is labelled as follows: 

(A) B1 - PERCENTILE BOOTSTRAP 

(B) B2 - BOOTSTRAP-T 

(C) B3 - CALIBRATION BOOTSTRAP 

 

Table 1. Coverage probability for sample size, 

30 50 100,  and n = and concentration parameter, 

1 2 3 5 10 15, , , ,  and  =  

n    
Method 

B1 B2 B3 

30 

1 

2 

3 

5 

10 

15 

0.889 

0.889 

0.894 

0.886 

0.853 

0.869 

0.939 

0.942 

0.911 

0.925 

0.917 

0.922 

0.938 

0.926 

0.921 

0.917 

0.916 

0.916 

50 

1 

2 

3 

5 

10 

15 

0.914 

0.919 

0.897 

0.881 

0.919 

0.908 

0.931 

0.906 

0.939 

0.931 

0.917 

0.933 

0.946 

0.940 

0.937 

0.934 

0.930 

0.930 

100 

1 

2 

3 

5 

10 

15 

0.914 

0.939 

0.922 

0.931 

0.878 

0.900 

0.956 

0.931 

0.961 

0.936 

0.944 

0.944 

0.952 

0.946 

0.948 

0.944 

0.944 

0.943 

 

As sample size increases in Table 1, the coverage probability 

approaches the target value (0.95) for each concentration 

parameter,  . B1 gives consistently lower coverage 

probability than the target value which leads to the poorest 

performance method. As sample size, n  and concentration 

parameter,   increases, the coverage probability using the 

B3 method is very close to the target value. Thus, B3 is the 
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best method based on the performance of coverage 

probability. 

From the results obtained and displayed in Table 2, it can 

be seen that the expected length value increases as the 

concentration parameter,   increases for each sample size, 

n. For each concentration parameter,   increase in the 

sample size, n  results in a decrease of the expected length for 

all methods. The expected length value of B1 method 

consistently gives larger value. Meanwhile, the expected 

length value of B2 and B3 methods are very close to each 

other with B2 consistently smaller. Thus, we can infer that B2 

is the superior method based on this performance. 

 

Table 2. Expected length for sample size, 

I. 30 50 100,  and n = and concentration parameter, 

II. 1 2 3 5 10 15, , , ,  and  =  

n    
Method 

B1 B2 B3 

30 

1 

2 

3 

5 

10 

15 

1.4258 

2.4429 

3.8603 

6.2738 

14.0267 

19.8517 

1.1320 

1.7270 

2.6446 

4.4233 

10.0058 

14.3233 

1.1648 

1.7637 

2.7262 

4.5853 

10.2404 

14.6374 

50 

1 

2 

3 

5 

10 

15 

1.0151 

1.5808 

2.5966 

4.6363 

9.6311 

14.0911 

0.9053 

1.3093 

2.0558 

3.7672 

7.7536 

11.8226 

0.9333 

1.3466 

2.1199 

3.8667 

7.9798 

11.4588 

100 

1 

2 

3 

5 

10 

15 

0.6901 

1.0538 

1.6311 

2.9260 

5.4827 

9.2079 

0.6521 

0.9698 

1.4605 

2.6487 

4.8788 

8.2549 

0.6725 

1.0022 

1.4985 

2.7431 

5.0030 

8.5628 

Based on the performance measure using coverage 

probability in Table 1, B3 is the superior method. Meanwhile, 

based on the expected length, method B2 performs better 

than method B1 and B3. 

 

III. ILLUSTRATIVE EXAMPLE 
 

As an illustration of the proposed method, daily wind 

direction data (in radian) recorded at maximum wind speed 

(in m
s

) for four stations in Malaysia were considered. These 

data were collected from the year of 2013 to 2017 at an 

altitude of 2.1m to 16.1m. A total of 80 data points was 

obtained from each stations which are located at peninsular 

and east Malaysia. For the peninsular Malaysia, the stations 

are located at west coast and east coast regions. For the west 

coast region, the stations are located at Alor Setar and Kuala 

Lumpur International Airport (KLIA) meanwhile for the east 

coast region, the station is located at Kuala Terengganu. For 

east Malaysia, a  station located at Kota Kinabalu was 

considered. Figure 1 shows the locations of all stations. All 

data were obtained from Malaysian Meteorological 

Department. 

Table 3 shows the confidence intervals and expected lengths 

for concentration parameter of wind direction based on the 

three methods for four stations. 
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Figure 1. Malaysia Map (ref: ms.wikipedia.org/wiki/Fail:Malaysia_location_map.svg) 

 

For each station, the estimation concentration parameter, 

̂  is calculated. All estimation values are located in the range 

of confidence interval. From the estimation values of all 

stations, Kuala Terengganu recorded the highest estimation 

value which means that the wind direction at east coast 

region is less scattered and more concentrated. The wind 

direction at KLIA station which located at west coast region 

is more scattered and more dispersed since it recorded lowest 

value of estimation concentration parameter.  

By comparing on the expected length, all results are similar 

with the findings from the simulation studies. For all stations, 

B1 method (percentile bootstrap) consistently give largest 

expected length value. The expected length values of B2 

(bootstrap-t) and B3 (calibration bootstrap) methods are 

close to each other where B3 record slightly larger value than 

B2 methods.

 

Table 3. Confidence Interval (CI) for wind direction data recorded at maximum wind speed 

Region Station ̂  Method Confidence Interval Expected Length 

West Coast, 

Peninsular 

Malaysia 

Alor Setar 2.6272 

B1 (2.1107, 3.7782) 1.6675 

B2 (2.0122, 3.2587) 1.2465 

B3 (1.9616, 3.2587) 1.2971 

KLIA 1.2270 

B1 (0.8810, 1.9377) 1.0567 

B2 (0.9554, 1.7279) 0.7725 

B3 (0.9174, 1.7279) 0.8105 

East Coast, 

Peninsular 

Malaysia 

Kuala Terengganu 7.3049 

B1 (5.8782, 11.2306) 5.3524 

B2 (5.5606, 9.4539) 3.8933 

B3 (5.3673, 9.4539) 4.0866 

East Malaysia Kota Kinabalu 2.3332 

B1 (1.8660, 3.2501) 1.3842 

B2 (1.8218, 3.0174) 1.1956 

B3 (1.7415, 3.0174) 1.2759 
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IV. SUMMARY 
 

This article considers calibration bootstrap method in 

constructing the confidence interval of the concentration 

parameter,   for the von Mises distribution. The method is 

derived and compared with percentile bootstrap and 

bootstrap-t methods. Two indicators; coverage probability 

and expected length were calculated in determining the best 

method. The coverage probability value is more influenced 

and often used in measuring the performance of confidence 

interval. Based on the results, calibration bootstrap method 

performs better compared to the other bootstrap methods.  

The methods were tested using real data set and the results 

aligned with the simulation results. 
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