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We considered an expansion of real numbers 𝑥 = [𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ] with 𝑅𝑛 = [𝑎𝑛+1𝜃, 𝑎𝑛+2𝜃, … ] 

where 𝑥 ∈ (0, 𝜃)and0 < 𝜃 < 1. This paper emphasizes the best approximations of 𝜃-expansions since we 

knew the best approximations of regular continued fraction (RCF) expansions has been generally 

proved as 𝐶𝑛. Regarding this purpose, we provided the numerical computations on the 𝜃-convergent 

based on a few samples by using a Maple software. This software helped us to compute the value of 𝜃-

convergent briskly and efficiently instead of using the traditional method of computing the convergent 

of a small sample involving the Euclidean algorithm. We took various values of 𝜃 within the stated range 

including 𝜃 = 1. This is because, we were eager to know how the value of 𝜃 influenced the value of 

convergent for both 𝜃 and RCF expansions. Hence, throughout the numerical experiment conducted, we 

revealed that in general, there was no specific 𝜃-convergent to be the best approximations of 𝑥 in each 

sample. The samples might give different best approximations and the results were depending on the 

values of their 𝜃. However, similar things that happened in every sample of 𝜃-expansions are their best 

approximations always occurred early in the sequence. 
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I. PRELIMINARIES 
 
 
Suppose that throughout our discussion, we referred our 

expansion as the continued fraction expansion of a number 

𝑥 in (0, 𝜃). One expansion discussed by (Chakraborty & 

Rao, 2003), which was studied in detail by (Sebe & Lascu, 

2014), had raised a different type of continued fractions, 

namely 𝜃-expansions. (Chakraborty & Rao, 2003) defined 

this new expansion as follows: 

Definition 1 Let 𝑥 > 0. Let 𝑎0 = 𝑚𝑎𝑥{𝑛 ≥ 0; 𝑛𝜃 ≤ 𝑥}. If 

𝑥 already equals 𝑎0𝜃, we write 𝑥 = [𝑎0𝜃]. Otherwise, 

define 𝑟1 by 𝑥 = 𝑎0𝜃 + 1 𝑟1⁄  where 0 < 1 𝑟1⁄ < 𝜃. Then, 𝑟1 >

1 𝜃 ≥⁄ 𝜃 and let 𝑎1 = 𝑚𝑎𝑥{𝑛 ≥ 0; 𝑛𝜃 ≤ 𝑟1}. If 𝑟1 = 𝑎1𝜃, then 

we write 𝑥 = [𝑎0𝜃, 𝑎1𝜃], in other word, 𝑥 = 𝑎0𝜃 + 1 𝑎1𝜃⁄ . If 

𝑎1𝜃 < 𝑟1, define 𝑟2 by 𝑟1 = 𝑎1𝜃 + 1 𝑟2⁄  where 0 < 1 𝑟2⁄ < 𝜃. 

So, 𝑟2 > 1 𝜃 ≥⁄ 𝜃 and let 𝑎2 = 𝑚𝑎𝑥{𝑛 ≥ 0; 𝑛𝜃 ≤ 𝑟2}. To 

proceed this way, either the process terminates at, say, 𝑛 

steps or it continues indefinitely. In the former case, we 

write 𝑥 = [𝑎0𝜃; 𝑎1𝜃, … , 𝑎𝑛𝜃] and we call this the continued 

fraction expansion of 𝑥 with respect to 𝜃 terminating at the 

𝑛-th stage. In the latter case, we write 𝑥 =

[𝑎0𝜃; 𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ] where 𝑅𝑛 = [𝑎𝑛+1𝜃, 𝑎𝑛+2𝜃, … ] 

and it is called the infinite or non-terminating continued 

fraction expansion of 𝑥 with respect to 𝜃.  

When 𝑥 < 𝜃, we will have 𝑎0 = 0 and instead of writing 

𝑥 = [0; 𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ], we can also write 𝑥 =
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[𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ] which is the same as following 

expansion: 

   𝑥 =
1

𝑎1𝜃 +
1

𝑎2𝜃+
               ⋱

                                       +
1

𝑎𝑛𝜃+
1

𝑅𝑛

.  (1) 

where 

𝑅𝑛 = 𝑎𝑛+1𝜃 +
1

𝑎𝑛+2𝜃 + ⋯
.                 (2) 

From expansion in (1), Chakraborty & Rao (2003) also 

defined the following item: 

Definition 2 Define the 𝑛-th 𝜃-convergent of a 

number 𝑥 ∈ (0, 𝜃) as 

𝐶𝑛 =
𝑝𝑛

𝑞𝑛
= [𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃]               (3) 

for 𝑛 ≥ 0. 

From Definition 2, in case 𝑥 has terminating expansion, 

say, 𝑥 = [𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑘𝜃], then clearly 𝑝𝑘 𝑞𝑘⁄ = 𝑥. We 

make the usual convention that in this case, 

𝑝𝑛

𝑞𝑛
= 𝑥                                     (4) 

for 𝑛 ≥ 𝑘.  

Next, in this project, we let our 0 < 𝑥 < 𝜃 with 𝑥 =

[𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ]. In what follows 𝑎𝑛, 𝑝𝑛 and 𝑞𝑛 

depends on 𝑥. The stated identities hold for all 𝑛 in case 𝑥 

has non-terminating expansion and they hold for 𝑛 ≤ 𝑘 in 

case 𝑥 has expansion terminating at the 𝑘-th stage. Then, 

following are the recurrence relations for 𝑛 ≥ 1, as follows: 

𝑝𝑛 = 𝑎𝑛𝜃𝑝𝑛−1 + 𝑝𝑛−2 

𝑞𝑛 = 𝑎𝑛𝜃𝑞𝑛−1 + 𝑞𝑛−2.                  (5) 

Following the convention of the usual continued fraction 

expansions, namely, 𝑝−1 = 1, 𝑝0 = 0,𝑞−1 = 0, 𝑞0 = 1, we 

obtain for the 𝜃-expansions,  

𝑝0 = 𝑎0𝜃 = 0; 𝑝1 = 𝑎0𝜃𝑎1𝜃 + 1 

𝑞0 = 1; 𝑞1 = 𝑎1𝜃.                     (6) 

From (1), (2), (5) and (6), we obtain that 

                              𝑥 =
𝑝𝑛 +

1

𝑅𝑛
𝑝𝑛−1

𝑞𝑛 +
1

𝑅𝑛
𝑞𝑛−1

.                      (7) 

(Chakraborty & Rao, 2003) have initiated this 𝜃-

expansions motivated by problems in random continued 

fraction expansions including the RCF expansions as well. 

The motivation of this research focus on 𝜃-expansion is 

because we would like to critically examine the behaviors 

of 𝜃-expansions and observe how various values of 𝜃 really 

affecting the result of their convergent if we compared to 

the result and convergent of RCF expansions. 

In this paper, our concern was to observe and discuss 

the best approximations of 𝜃-expansions since we knew 

for RCF expansions, 𝐶𝑛 will always be the best 

approximations. Recently, afew papers have discussed on 

the properties of the 𝜃-convergent as in the paper written 

by Muhammad & Kamarulhaili, (2018). They 

demonstrated a detailed study on the convergent 

properties for a family of 𝜃-expansions. In addition, they 

also observe the pattern and behaviors of those convergent 

besides provide the numerical computations on the 𝜃-

convergent. 

Actually, RCF expansions act as a pillar to the 

development of 𝜃-expansions. Hence, Muhammad & 

Kamarulhaili, (2016) have provided the properties of RCF-

convergent which then helped to generate the behaviours 

of 𝜃-expansions. In that paper, they discussed the 

properties that are relevant to sequences of integer in RCF 

expansions which involved the concept of Euclidean 

algorithm, extended Euclidean algorithm, and continued 

fraction algorithm. Those properties are regarded as part 

and parcel of the building blocks of a new generation of an 

efficient cryptographic protocol. Also, continued fraction 

algorithm is widely used in cryptography such as in 

(Thirumalai et al., 2016). 

From the convergent, we were likely to perceive how 

fast does a continued fraction converge and how fast it 

obtains the best approximations. With regard to this 

matter, for RCF-expansions have been answered and 

provided through the research made by Falbo (2018). On 

the other hand, there were a few theorems of a general 

character for the convergence of continued fraction with 

complex elements as discussed and obtained by Van Vleck, 

(1901). 

Besides, continued fraction is also applied in graph 

theory. Bouttier & Guitter (2012) presented an unexpected 

connection between two map enumeration problems. They 

showed that in the general class of maps with controlled 

face degrees, the solution for both problems are actually 

encoded into the same quantity, respectively via its power 
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series expansion and its continued fraction expansion. 

This paper has been organized into 4 sections. In the 

first section, we introduced our preliminaries on the 

convergent for both 𝜃 and RCF expansions. Next, in 

Section 2, we provided the numerical results for both 

expansions. We discussed the mathematical 

programming, samples used, computation and the 

comparisons of the best approximations on both 

expansions. Then, we provided the behaviours of 𝜃-

expansions in Section 3 and last but not least, in Section 4, 

we summarized the overall research in this paper. 

 

II. NUMERICAL RESULTS AND 

DISSCUSSIONS 

 

In this section, we discuss on the results of numerical 

computations for both 𝜃-expansions and RCF-expansions 

based on our samples by using the mathematical 

programming. We then examine the pattern based on the 

convergent computed. Next, we observe and provide their 

best approximations and compare the best 

approximations between these both expansions. 

A. Computation of Irrational Numbers and 

Mathematical Programming 

 
 
This project focus on the infinite expansions which 

involving computation of the irrational numbers. Thus, 

Strayer (2001) provide us one proposition of constructing 

the infinite continued fraction. 

Proposition 1Let 𝑥 ∈ ℝ. Then, 𝑥 ∈ ℝ − ℚ if and only if 𝑥 

is expressible as an infinite regular continued fraction. 

Hence, through this proposition, we let𝑥 = 𝑥0 ∈ ℝ − ℚ . 

We defined 𝑎0, 𝑎1, 𝑎2, …and 𝑥1, 𝑥2, … by the following 

recurrence relations: 

𝑎𝑖 = [𝑥𝑖], 𝑖 ≥ 0 

𝑥𝑖+1 =
1

𝑥𝑖 − 𝑎𝑖
, 𝑖 ≥ 0.                   (8) 

Then, we used the Maple software to compute our 

samples based on Proposition 1 since this project involved 

the computation of large samples of irrational value, 𝑥for 

both 𝜃and RCF expansions. First, we obtain its 𝑎𝑛’s which 

then, we substituted the value of various thetas in the 

range of 0 < 𝜃 ≤ 1 and lastly we obtain the value of their 

𝜃-convergent for each sample. 

Throughout the project, we have analysed more than 50 

samples of 𝑥 and used various values of 𝜃. The purpose 

was to observe the performance of different values of 𝜃on 

a fixed value of 𝑥 towards the value of convergent. 

However, in this paper, we provided 2 samples of 

approximated value of 𝑥with iterations, 𝑛 = 10and used 10 

different values of 𝜃. 

B. Convergent for Both Expansions 
 

We provided two samples for computing the 𝜃and RCF 

convergent with iteration, 𝑛 = 10. For these two samples, 

we used ten different values of 𝜃.They were𝜃1 = 0.1, 𝜃2 =

0.2, 𝜃3 = 0.3, 𝜃4 = 0.4, 𝜃5 = {√21} = 0.582575695, 𝜃6 =

{√13} = 0.605551275, 𝜃7 = 0.7, 𝜃8 = 0.8, 𝜃9 = {√35} =

0.916079783, and 𝜃10 = 1.00. For the first sample, we let 

our approximated value, 𝑥 = {√18} = 0.242640686.By 

applying equation (3), (5), (6) and (8) on Maple, we 

obtained their 𝑎𝑛𝜃𝑛, 𝑝𝑛, 𝑞𝑛and 𝐶𝑛. The convergent of both 

expansions are stated below: 

 
Table 1. The value of convergent, 𝐶𝑛 for ten different values 

of theta, 𝜃𝑛 for 𝑥 = 0.242640686. 

 

For the second sample, we let our approximated value, 

𝑥 = {√91} = 0.539392014with ten different values of 𝜃as 
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stated earlier. Again, by applying the method in(3), (5), 

(6) and (8) on Maple, we obtained their 𝑎𝑛𝜃𝑛, 𝑝𝑛, 𝑞𝑛and 

𝐶𝑛. The convergent of both expansions are shown in Table 

2. 

Table 2. The value of convergent, 𝐶𝑛 for ten different values 
of theta, 𝜃𝑛 for 𝑥 = 0.539392014. 

 

Next, we provide the graph for growth rate of convergent 

for these two samples. The graphs are plotted as follow: 

 

 

Figure 1: Growth rate of convergent for approximated 
value, 𝑥 = 0.242640686. 

 

Figure 2: Growth rate of convergent for approximated 
value, 𝑥 = 0.539392014. 

 

C. Best Approximations on Both Expansions 

 
 
Based on our samples, we are going to discuss their best 

approximations of 𝜃-expansions and RCF expansions. We 

aimed to investigate and observe the impact of different 

values of 𝜃on the values of convergent. Table I presents 

the convergent of the approximated value, 𝑥 = {√18} =

0.242640686. For 𝜃-expansions with 0 < 𝜃 < 1, we 

obtained that for each of 𝑥,𝐶2was the closest 𝜃-convergent 

values to the best decimal approximation of 𝑥. In addition, 

through the graph in Figure 1, we can see that as𝑛 → ∞, 

𝐶2 → 𝑥. However, for RCF expansions when 𝜃 = 1.00; 

starting from 𝐶7,the value of RCF-convergent started to 

converge the closest and exactly the same as the 

approximated value of 𝑥. 

Next, Table II illustrates that for approximated value 

𝑥 = {√91} = 0.539392014, 𝐶4was the closest 𝜃-convergent. 

However, it was different for RCF expansions when 𝜃 =

1.00, as 𝑛 → ∞, 𝐶𝑛 → 𝑥. Figure 2 shows the value of RCF-

convergent was almost similar to the best decimal 

approximation of𝑥. 

As a conclusion, From Table I, II, Figure 1 and 2, we 

can conclude that as the value of 𝜃approaches to 1, the 

closer the value of 𝜃-convergent to the approximated value 

of 𝑥. We provide this theoretical prove in the next section. 

Apart from that, we found that there was no specific 𝜃-

convergent to be the best approximations of 𝑥for 𝜃-

expansions in general for each sample. Every sample 

might give different best approximations and the results 

are depending on the value of its theta, 𝜃. However, 
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similar things that happen in every sample are the best 

approximations always occur early in the sequence. 

D. Comparisons on the Best Approximations 

between Both Expansions 

Following were similarities and differences effects on the 

convergent for both expansions: 

 
Table 3. The similarities between 𝜃-expansions and RCF 

expansions. 
Expansion 𝜽-

Expansions 

RCF 

Expansions 

Similarities For 𝑛 ≥ 1, as 𝜃 → 1, each 𝐶𝑛 → 𝑥 

Table 4. The differences between 𝜃-expansions and RCF 
expansions. 

Expansio

ns 

𝜽-Expansions RCF 

Expansions 

Converge

nt 

converge 

𝜃-convergent will 

converge close to 

the 

approximated 

value of 𝑥 at the 

early iteration of 

convergent 

As 𝑛 → ∞, we will 

obtain the 

closest RCF-

convergent and 

the value of their 

convergent is 

exactly the same 

with the 

approximated 

value of 𝑥 

Range of 

Theta, 𝜽 

0 < 𝜃 < 1 𝜃 = 1.00 

Best 

approxim

ations 

No exact best 

approximations 

for 𝜃-𝐶𝑛. It is all 

depending on the 

value of 𝜃 

𝐶𝑛is always the 

best 

approximations 

for RCF 

expansions 

Based on the previous numerical computations, we 

provide these following theoretical behaviours to support 

the statement. 

III. THEORETICAL BEHAVIORS OF 𝜽-

EXPANSIONS 

 

Lemma 1 Let 𝑥 = [𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ]where𝑅𝑛 =

[𝑎𝑛+1𝜃, 𝑎𝑛+2𝜃, … ]be an infinite𝜃-expansion of continued 

fraction and let all notation be as in equation (5)and(6). 

Then for 𝑛 ≥ 0, 

𝑝𝑛−1𝑞𝑛 − 𝑝𝑛𝑞𝑛−1 = (−1)𝑛. (9) 

Proof: 

We used the method of induction on 𝑛 to prove this 

property. If 𝑛 = 1, we have 

𝑝0𝑞1 − 𝑝1𝑞0 = 𝑎0𝜃𝑎1𝜃 − 𝑎0𝜃𝑎1𝜃 − 1 = −1. (10) 

Now, we assumed that 𝑚 ≥ 1 and the desired result holds 

for 𝑛 = 𝑚, so that 

𝑝𝑚−1𝑞𝑚 − 𝑝𝑚𝑞𝑚−1 = (−1)𝑚.              (11) 

We must show that 

𝑝𝑚𝑞𝑚+1 − 𝑝𝑚+1𝑞𝑚 = (−1)𝑚+1             (12) 

so that the desired result holds for 𝑛 = 𝑚 + 1.We have  

𝑝𝑚𝑞𝑚+1 − 𝑝𝑚+1𝑞𝑚

= 𝑝𝑚(𝑎𝑚+1𝜃𝑞𝑚 + 𝑞𝑚−1)

− (𝑎𝑚+1𝜃𝑝𝑚 + 𝑝𝑚−1)𝑞𝑚  

= −(𝑝𝑚−1𝑞𝑚 − 𝑝𝑚𝑞𝑚−1) = −(−1)𝑚

= (−1)𝑚+1 

asdesired.∎ 

Theorem 1 Let 𝑥 = [𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ] where 

𝑅𝑛 = [𝑎𝑛+1𝜃, 𝑎𝑛+2𝜃, … ]be an infinite 𝜃-expansion of 

continued fraction with 𝑥 ∈ (0, 𝜃) and fixed 𝜃 within the 

range of 0 < 𝜃 < 1. The 𝜃-convergent,𝑝𝑛 and 𝑞𝑛 are as 

stated in recurrence relations (3), (5) and (6). If 𝑝𝑛 𝑞𝑛⁄  

satisfying 

|𝑥 −
𝑝𝑛

𝑞𝑛
| < |𝑥 −

𝑝𝑛−1

𝑞𝑛−1
| ,              (14) 

then 𝑞𝑛 form an increasing sequence withrestriction 

(𝑅𝑛−1𝑞𝑛−1 + 𝑞𝑛−2) > (𝑅𝑛𝑞𝑛 + 𝑞𝑛−1). 

Proof: 

From (7) and (9), we have𝑥 =

(𝑝𝑛𝑅𝑛 + 𝑝𝑛−1) (𝑞𝑛𝑅𝑛 + 𝑞𝑛−1)⁄  and 𝑝𝑛−1𝑞𝑛 − 𝑝𝑛𝑞𝑛−1 =

(−1)𝑛. Then, we obtain 

|𝑥 −
𝑝𝑛

𝑞𝑛
| = |

(−1)𝑛

𝑅𝑛𝑞𝑛
2 + 𝑞𝑛−1𝑞𝑛

|             (15) 

where 𝑅𝑛 = [𝑎𝑛+1𝜃; 𝑎𝑛+2𝜃, … ]. Then, 

|𝑥 −
𝑝𝑛−1

𝑞𝑛−1
| = |

(−1)𝑛−1

𝑅𝑛−1𝑞𝑛−1
2 + 𝑞𝑛−1𝑞𝑛−2

|.   (16) 

Hence, we compared(15)and(16), we obtained as follows: 

|
(−1)𝑛

𝑅𝑛𝑞𝑛
2 + 𝑞𝑛−1𝑞𝑛

| < |
(−1)𝑛−1

𝑅𝑛−1𝑞𝑛−1
2 + 𝑞𝑛−1𝑞𝑛−2

|. 

1

𝑅𝑛𝑞𝑛
2 + 𝑞𝑛−1𝑞𝑛

<
1

𝑅𝑛−1𝑞𝑛−1
2 + 𝑞𝑛−1𝑞𝑛−2

 

𝑅𝑛𝑞𝑛
2 + 𝑞𝑛−1𝑞𝑛 > 𝑅𝑛−1𝑞𝑛−1

2 + 𝑞𝑛−1𝑞𝑛−2 
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𝑞𝑛(𝑅𝑛𝑞𝑛 + 𝑞𝑛−1) > 𝑞𝑛−1(𝑅𝑛−1𝑞𝑛−1 + 𝑞𝑛−2) 

𝑞𝑛

𝑞𝑛−1
>

(𝑅𝑛−1𝑞𝑛−1 + 𝑞𝑛−2)

(𝑅𝑛𝑞𝑛 + 𝑞𝑛−1)
 

𝑞𝑛 > 𝑞𝑛−1                            (17) 

with restriction[(𝑦𝑛𝑞𝑛−1 + 𝑞𝑛−2) (𝑦𝑛+1𝑞𝑛 + 𝑞𝑛−1)⁄ ] >

1.           ∎ 

Theorem 2 Let 𝑥 = [𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ] where 

𝑅𝑛 = [𝑎𝑛+1𝜃, 𝑎𝑛+2𝜃, … ]be an infinite 𝜃-expansion of 

continued fraction with𝑥 ∈ (0, 𝜃) and fixed 𝜃within the 

range of  0 < 𝜃 < 1. Every 𝜃-convergent, 𝑝𝑛 𝑞𝑛⁄  are 

satisfied as in the recurrence relations(3), (5) and (6). As 

𝜃 → 1, the 𝜃-convergent will tend to the best 

approximated value of 𝑥. 

Proof: 

We have 𝑝𝑛 and 𝑞𝑛 satisfying the recurrence relations (5) 

and (6). From (15), we have|𝑥 − (𝑝𝑛 𝑞𝑛⁄ )| =

|(−1)𝑛 (𝑅𝑛𝑞𝑛
2 + 𝑞𝑛−1𝑞𝑛)⁄ |. We expanded equation (15), 

then we obtained 

|𝑥 −
𝑝𝑛

𝑞𝑛
|

= |
(−1)𝑛

𝑅𝑛(𝑎𝑛𝜃𝑞𝑛−1 + 𝑞𝑛−2)2 + (𝑎𝑛𝜃𝑞𝑛−1 + 𝑞𝑛−2)𝑞𝑛−1
| .  (18) 

From (18), obviously, when the value of 𝜃 increases, it will 

lead to the increase in value to the denominator of 

equation (18). Then,increase in the value of 𝜃 will make 

the right-hand side of equation (18)tends to approach 0 

where it automatically gives the smallest distance between 

its 𝜃-convergent to the best approximated value of𝑥, in 

which, we have |𝑥 − 𝐶𝑛| → 0 as 𝜃 → 1. Thus, as the value of 

𝜃increases, its𝜃-convergent will tend to the best 

approximated value of 𝑥. ∎ 

Definition 3Given an infinite 𝜃-expansion𝑥 =

[𝑎1𝜃, 𝑎2𝜃, … , 𝑎𝑛𝜃 + 1 𝑅𝑛⁄ ] where 𝑅𝑛 = [𝑎𝑛+1𝜃, 𝑎𝑛+2𝜃, … ] of 

continued fraction with 𝜃-convergent, 𝐶𝑛 = 𝑝𝑛 𝑞𝑛⁄ . 

𝐶𝑛 = 𝑝𝑛 𝑞𝑛⁄  is the best approximate decimal number if the 

distance of |𝑥 − 𝑝𝑛 𝑞𝑛⁄ | gives the smallest value and is the 

closest to the value of 𝑥. 

IV. SUMMARY 
 

Throughout this paper, we have provided the theoretical 

properties of𝜃-expansions to support their numerical 

evidence. Basically, the idea for this expansion was 

generated from RCF expansions. However, from our 

observations, the pattern of 𝜃-expansions was not likely 

the same as RCF expansions since the value of 𝜃gave a 

different view on the growth rate of convergent for both 

expansions. In our project, we applied the Maple software 

to compute the convergent of big samples of irrational 

number, 𝑥. 

Hence, from the numerical results, we were likely to 

perceive the best decimal approximations of both 𝜃and 

RCF expansions. The best decimal approximations of𝜃-

expansions was totally different from the best 

approximations of RCF expansions.For 𝜃-expansions, the 

best decimal approximations are depending on the value 

of 𝜃 and there is no specific pattern to determine their best 

approximations since the value of 𝜃are varies.From our 

numerical calculations, we found that for 𝜃-expansions, in 

most of the cases, 𝐶2gave the best approximations within 

the range of 0 < 𝜃 < 1.However, there are certain cases in 

which 𝐶4 is the best approximations in the range of 0 <

𝜃 < 1. Then, for RCF expansions, 𝐶𝑛 is always their best 

approximations. 
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