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This work presents three distinct attacks on the modulus of type N = p2q. The first attack
focused on the generalized key equation eX −NY = (ap2 + bq2)Z. Under certain conditions,
the modulus N = p2q can be factored in polynomial time by using continued fraction expansion
together with some restrictions on some parameters. The existence of probabilistic polynomial
time algorithm which output the factor p and q is also presented. Hence, one can run the
proposed algorithm to test whether the key belongs to the corresponding weak class or not to
ensure that one does not accidentally create a weak key. Consequently, the next two attacks
focus on multivariable case for system of generalized key equations utilize the combination of
simultaneous Diophantine approximation and the LLL algorithm which enables one to factor
the k moduli Ni = p2i qi simultaneously in polynomial time.
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I. Introduction

The idea to utilize key e to encrypt and key
d to decrypt came from the seminal work by
Diffie and Hellman, 1976 where e 6= d. This
idea radicalized the secure communication con-
cept. Invented in 1978, named after its inven-
tors Rivest, Shamir and Adleman, RSA cryp-
tosystem is one of the well-known public key
cryptosystem that played a very important role
in providing privacy and ensuring data authen-
ticity.

The mathematical operations in RSA depend
on three parameters, the modulus N = pq
which is the product of prime numbers p and
q, a congruence relation of ed ≡ 1(mod φ(N))
where e, d be the public exponent and the pri-
vate exponent, respectively and φ(N) is the
Euler’s totient function. Hence, the difficulty
of breaking the RSA cryptosystem is based on

three hard mathematical problems, namely the
integer factorization problem of N = pq, find-
ing the e-th root of x ≡ ye(mod N) and solv-
ing the linear equation ed − kφ(N) = 1 which
contains three variables namely (d, φ(N), k)
(Rivest, Shamir, and Adleman, 1978).

There are many practical issues that have
been considered when implementing RSA cryp-
tosystem to reduce the encryption process or
the execution decryption time. If the secret
exponent d is relatively small, then the RSA
cryptosystem seems to have faster decryption
process. Therefore, knowing the value of d will
lead to factoring the modulus N .

In 1990, Wiener proved that, if the secret
exponent d < 1

3N
1/4 which lead to RSA to

be totally insecure. Wiener, 1990 was able to
obtain the integer solutions through the con-
tinued fractions of e

N and eventually factor-
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ing N . Recently, Muhammad Asyraf Asbul-
lah and Muhammad Rezal Kamel Ariffin, 2019
show that the Wiener’s bound can be improved
to d < 1

2N
1/4. Furthering this, by using lat-

tice basis reduction technique D. Boneh and G.
Durfee, 1999 proposed an extension of Wiener’s
work which RSA insecure when the secret ex-
ponent d < N0.292. Blömer and May, 2004
combine lattice basis reduction techniques with
continued fractions algorithm which later leads
to the factorization of RSA.

J. Hinek, 2007 presented another attack for a
single user generate k instances of RSA (Ni, ei),
each with the same small private exponent d
using k equations eid−kiφ(Ni) = 1 and showed
that the k modulus Ni are easily factorable if
d < N δ with δ = k

2(k+1) − ε which ε is a small
constant relying upon the size of max Ni.

Sarkar and Maitra, 2010 proposed a general-
ized attack when n ≥ 2 many decryption key
d used with the common RSA modulus N and
di < N

3n−1
4n−4 for each i, 1 ≤ i ≤ n. Later, Nitaj

et al., 2014 proposed new strategy based on the
a lattice basis reduction technique to factor all
the RSA moduli N1, ..., Nk. The result consider
the situation such that the RSA moduli satisfy
k equations respectively to the generalized key
equation eix− yiφ(Ni) = zi or eixi− yφ(Ni) =
zi, where xi, yi, zi, x, y are appropriately small
parameters and φ(Ni) = (pi − 1)(qi − 1).

Variant designs of the RSA utilizing N = p2q
exist because of various reasons to achieve bet-
ter throughput. This is to be able to send
large data sets and to obtain better compu-
tation time while maintaining the level of se-
curity. For example the HIME(R) design be-
came a standard in Japan because it was able
to “carry” more data securely than the existing
RSA.

On the other hand, Takagi, 1998 showed that
the decryption process is about three times
faster than RSA cryptosystem using Chinese
Remainder Theorem if they choose the 768-bit
modulus p2q for 256-bit primes p and q. Ad-
ditionally, AAβ Cryptosystem that has been
proposed by Muhammad Rezal Kamel Ariffin
et al., 2013 overcome Rabin’s cryptosystem de-

cryption failure which was due to a 4-to-1 map-
ping by incorporating the hardness of factoring
integer N = p2q coupled with the square root
problem as its cryptographic primitive. The
design for encryption does not involve “expen-
sive” mathematical operation.

Throughout many years, the use of modu-
lus N = p2q has found in many applications in
cryptography. For example, Fujioka, Tatsuaki
Okamoto, and Miyaguchi, 1991 used a modu-
lus of the form N = p2q in an electronic cash
scheme. Due to Peralta and E. Okamoto, 1996,
a factoring method specifically for N = p2q
has been proposed which this method is a vari-
ation of Ellicptic Curve Method (ECM) and
was suggested to be slightly faster than ECM
(M. J. Hinek, 2009). Then, T. Okamoto and
Uchiyama, 1998 proposed a public key cryp-
tosystem which can be proven to be as secure as
the intractability of factoring N = p2q against
passive adversaries (Dan Boneh, Glenn Durfee,
and Howgrave-Graham, 1999).

According to May, 2004 the modulus of the
form N = p2q was frequently used in de-
signing efficient public key cryptosystems, thus
such modulus is considered an important case
in cryptography and cryptanalysis. Instances
of schemes that utilize the modulus N =
p2q are Multi-power RSA Cryptosystem (Tak-
agi, 1998), T. Okamoto and Uchiyama, 1998,
HIME(R) Cryptosystem (Nishioka, Satoh, and
Sakurai, 2001), the AAβ Cryptosystem (M. As-
bullah and M. Ariffin, 2014) and Rabin-p Cryp-
tosystem (M. A. Asbullah and M. R. K. Arif-
fin, 2016b).

In 2014, Sarkar proved that the modulus
N = p2q can be factored if d < N0.395 us-
ing lattice reduction techniques (Sarkar, 2014).
Recently, M. A. Asbullah and M. R. K.
Ariffin, 2015 shows that the modulus of N =
p2q can be factored if e satisfies the equation
eX − (N − (ap2 + bq2))Y = Z with some re-
strictions on some parameters. Motivated from
these efforts, we will look at the modulus of the
form N = p2q as the basis of our analysis.

Our contributions. In this paper, we be-
gin with an attack on the modulus of type
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N = p2q by using the continued fraction ex-
pansion method. We consider the public value,
e satisfying the following generalized key equa-
tion, eX − NY = (ap2 + bq2)Z. We present
a strategy to find prime factor p and q of the
modulus N = p2q in polynomial time by using
continued fraction expansion if gcd(X,Y ) = 1,

|ap2 − bq2| < N1/2, 1 ≤ |Z| <
√
2N1/2

|ap2−bq2| , 1 ≤
Y < X < N

2|Z|(ap2+bq2) together with an algo-

rithm that on input public parameters and out-
put the factor p and q. Hence, one can run the
algorithm to test whether the key belongs to
the coresponding weak class or not. This prop-
erty is very useful in the design of cryptosystem
during key generation process to ensure that
one does not accidentally create a weak key.

Next, the second attack is upon k-instances
(Ni, ei). We show that we are able to fac-
tor k moduli of the form Ni = p2i qi satisfy-
ing the system of generalized key equations
eix − Niyi = (ap2i + bq2i )zi. We prove each
moduli Ni can be factored in polynomial time

if x < N δ, yi < N δ, 1 ≤ |zi| <
√
2N1/2

|ap2i−bq2i |
where

δ = k
6 , N = min Ni simultaneously.

For the third attack, we show that we are
able to factor k moduli Ni = p2i qi when k in-
stances (Ni, ei) are available and the variables
(xi, y, z, δ) in the system of generalized key
equations given by eixi − Niy = (ap2i + bq2i )zi

satisfying xi < N δ, y < N δ, 1 ≤ |zi| <
√
2N1/2

|ap2i−bq2i |
where δ = βk − 5k

6 , N = max Ni and min ei =
Nβ.

For the second and third attack, we ap-
ply lattice basis reduction techniques upon the
simultaneous Diophantine problem with the
objective of finding the parameters (x, yi) or
(xi, y), respectively. This leads to an appro-
priate approximation of ap2 + bq2 to simulta-
neously extract the prime factors pi and qi of
each Ni = p2i qi.

The paper is organized as follows. Section 2
presents an introduction on some existing es-
sential definitions and theorems. In Section
3, 4 and 5, we consecutively present three dis-
tinct attacks, accompanied with numerical ex-
amples. In Section 6, we give the conclusion.

II. Preliminaries

A brief introduction to continued fractions ex-
pansion, the lattice basic reduction and si-
multaneous Diophantine approximation is de-
scribed in this section which later will be uti-
lized all through this paper.

A. Continued Fractions Expansion

An algebraic expression of the form

a0 +
1

a1 + 1

. . .+ 1

an+
...

= [a0, a1, . . . , an, . . .],

is a definition of the expansion of a continued
fraction. Such algebraic form can also be rep-
resented as x = [a0, a1, . . . , an, . . .]. Since the
appearance of the Wiener, 1990 work, much
more results on cryptanalysis using contin-
ued fraction expansions have become available.
For example are in recent years by the work
of Muhammad Asyraf Asbullah, Muhammad
Rezal Kamel Ariffin, and Mahad, 2016 and
M. A. Asbullah and M. R. K. Ariffin, 2016a.

Theorem 1. (Legendre’s Theorem) (Hardy
and Wright, 1965) . Let the continued
fraction expansion of x represented as x =
[a0, a1, a2, . . .]. If gcd(X,Y ) = 1 and∣∣∣x− Y

X

∣∣∣ < 1

2X2

then Y
X is convergent of x.

B. Lattice Basis Reductions

For d ≤ n, let u1, ..., ud be d linearly indepen-
dent vectors of Rn. The set of all integer linear
combinations of the vectors u1, ..., ud is called
a lattice of the form

L =

{
d∑
i=1

xiui | xi ∈ Z

}
.

The set (u1, ..., ud) is called a basis of L with a
dimension d. Let U be the matrix of the ui’s in
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the canonical basis of Rn. Then the determi-
nant of L is defined as det(L) =

√
det(UTU).

Suppose ‖v‖ is the Euclidean norm of a vec-
tor v ∈ L. One of an important computational
problem in lattice is to locate a short non-zero
vector in L.

Theorem 2. (A. K. Lenstra, H. W. Lenstra,
and Lovász, 1982). Let L be a lattice of di-
mension τ with a basis {v1, ..., vτ}. The LLL
algorithm produces a reduced basis {b1, ..., bτ}
satisfying

‖b1‖ ≤ ‖b2‖ ≤ ... ≤ ‖bi‖ ≤ 2
τ(τ−1)

4(τ+1−i) det(L)
1

τ+1−i ,

for all 1 ≤ i ≤ τ .

One of the crucial uses of the LLL algo-
rithm is provides solutions to the simultaneous
Diophantine approximations problem. A. K.
Lenstra, H. W. Lenstra, and Lovász, 1982 pro-
posed a way to compute simultaneous Dio-
phantine approximations with rational entries.
They considered a lattice with real numbers as
shown in the following proposition.

Proposition 1. There exists a polynomial
time algorithm that, given a positive integer n
and rational numbers α1, α2, ..., αn, ε satisfying
0 < ε < 1, finds integers p1, p2..., pn and q for
which

|qαi − pi| < ε and 1 ≤ q ≤ 2n(n+1)/4ε−n

for 1 ≤ i ≤ n.

The above proposition follows immediately
from the following classical theorem of Dirich-
let (Cassels, 1971, Section V.10).

Theorem 3. (Dirichlet Theorem). Let
θ1, ..., θn be n real numbers and Q a real num-
ber such that 0 < Q < 1. There exist integers
s1, ..., sn and a positive integer r ≤ Q−n such
that

|rθi − si| < Q for 1 ≤ i ≤ n.

Afterward, Nitaj et al., 2014 stated a proof for
a lattice with integer entries as follows.

Theorem 4. (Simultaneous Diophan-
tine Approximations) For rational numbers
α1, ..., αn, there exists an algorithm in polyno-
mial time to compute integers p1, ..., pn and a
positive integer q such that

maxi|qαi− pi| < ε and q ≤ 2n(n−3)/4 · 3n · ε−n

with 0 < ε < 1,

Proof. Appendix A, page 196 (Nitaj et al.,
2014).

III. The First Attack

We begin with the first attack upon the modu-
lus N = p2q which is based on the generalized
key equation eX − NY =

(
ap2 + bq2

)
Z. De-

fine [x] as a notation for the closest integer to
x. Without loss of generality, we may assume
that the modulus N = p2q satisfies q < p < 2q.
We begin with the following lemmas.

Lemma 1. (M. A. Asbullah and M. R. K.
Ariffin, 2015). For N = p2q, then

2−1/3N1/3 < q < N1/3 < p < 21/3N1/3

is true.

Lemma 2. Let |ap2 − bq2| < N1/2 with suit-
ably small integers a, b and gcd(a, b) = 1. Let

S = (ap2+bq2)Z, such that 1 ≤ |Z| <
√
2N1/2

|ap2−bq2| ,

then abZ2q =
[
S2

4N

]
.

Proof. Consider S = (ap2 + bq2)Z. Observe
that

S2 =
(

(ap2 + bq2)Z
)2

= (aZp2 + bZq2)2

= (aZp2 − bZq2)2 + 4(aZp2bZq2)

= (aZp2 − bZq2)2 + 4abZ2qN

Hence we obtain

S2 − 4abZ2qN = (aZp2 − bZq2)2 > 0(1)
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Divides (1) by 4N , we have∣∣∣∣ S2

4N
− abZ2q

∣∣∣∣ =

∣∣∣∣S2 − 4abZ2qN

4N

∣∣∣∣
=

(aZp2 − bZq2)2

4N

=
(ap2 − bq2)2Z2

4N

<
(ap2 − bq2)2

( √
2N1/2

|ap2−bq2|

)2
4N

<

(√
2N1/2

)2
4N

=
1

2

Hence abZ2q =
[
S2

4N

]
. �

Lemma 3. Consider e and N satisfying the
equation eX − NY =

(
ap2 + bq2

)
Z with suit-

ably small integers a, b such that gcd(a, b) =
gcd(X,Y ) = 1. If 1 ≤ Y < X < N

2|Z|(ap2+bq2) ,

then Y
X is amongst the convergent of the con-

tinued fraction e
N .

Proof. Consider the equation eX − NY =(
ap2 + bq2

)
Z. Suppose X < N

2|Z|(ap2+bq2) , thus

dividing such equation by NX gives∣∣∣∣ eN − Y

X

∣∣∣∣ =

∣∣∣∣∣
(
ap2 + bq2

)
Z

NX

∣∣∣∣∣
Since X < N

2|Z|(ap2+bq2) then

∣∣∣∣(ap2+bq2)ZNX

∣∣∣∣ <
1

2X2 holds. Hence by Theorem 1, Y
X is one of a

convergent of the continued fraction e
N . �

Theorem 5. Let e,N satisfying the equation
eX −NY =

(
ap2 + bq2

)
Z where X and Y are

coprime. Let 1 ≤ |Z| <
√
2N1/2

|ap2−bq2| . If 1 ≤ Y <

X < N
2|Z|(ap2+bq2) and |ap2 − bq2| < N1/2, then

N can be factored in polynomial time.

Proof. Assume X < N
2|Z|(ap2+bq2) , thus from

Lemma 3 gives Y
X is amongst the convergent

of the continued fraction of e
N . Define S

such that S = eX − NY . Note that Lemma
2 clearly implies abZ2q =

[
S2

4N

]
. Hence we

obtain q = gcd
([

S2

4N

]
, N
)

. �

We outline the following algorithm for factoring
the modulus N = p2q as per Theorem 5.

Table 1: Algorithm 1
Input: The integers (N, e) satisfies Theorem 5
Output: The prime factors p, q

1. Compute the continued fraction e
N .

2. For each convergent Y
X of e

N , compute S =
eX −NY .

3. Compute
[
S2

4N

]
.

4. Compute q = gcd
([

S2

4N

]
, N
)

.

5. If 1 < q < N , then p =
√

N
q .

Example 1. As an illustration of our first at-
tack, let N and e be as follows.

N = 64779261851429

e = 54618098576427

Assume that the tuple (e,N) fulfill all the re-
strictions as stated as in Theorem 5. First of
all, we determine the convergents of the con-
tinued fraction expansion of e

N as follows.[
0, 1,

5

6
,
11

13
,
16

19
,
27

32
,
43

51
,
3682

4367
,
7407

8785
,
11089

13152
,
18496

21937
, · · ·

]
.

Observe that the convergent 5
6 ,

11
13 ,

16
19 ,

27
32 ,

would produce S and
[
S2

4N

]
such that the

gcd
([

S2

4N

]
, N
)

= 1. respectively.

We proceed with the next convergent 43
51 , then

we obtain

S = eX −NY = 14767786330

and [
S2

4N

]
= 841656

Hence, we compute the
gcd(841656, 64779261851429) then we ob-
tain 35069, which gives the prime factors

q = 35069 and p =
√

N
q = 42979.
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IV. The Second Attack

We now present the second attack. The
methodolgy used in this section is analogous
to the work presented in Rahman et al., 2018.
Suppose that we are given k moduli Ni = p2i qi
for system of generalized key equations satisfy-
ing eix − Niyi = (ap2i + bq2i )zi. We transform
the equation into simultaneous Diophantine ap-
proximation problem, then we apply lattice ba-
sis reduction algorithm in order to obtain the
parameters (x, yi) which later recover the prime
factor pi and qi.

Theorem 6. Suppose that k ≥ 2, Ni = p2i qi,
1 ≤ i ≤ k be k moduli. Let N = min Ni. As-
sume that ei, i = 1, ..., k be k public exponents.
Define δ = k

6−αk. Let a, b be suitably small in-

tegers with gcd(a, b) = 1. Let ap2i +bq
2
i < N

2
3
+α

where 0 < α < 1/3. For i = 1, ..., k, if there
exist integers x and y such that x < N δ, k in-

tegers yi < N δ and |zi| <
√
2N1/2

|ap2i−bq2i |
satisfying

eix−Niyi = (ap2i + bq2i )zi

then it is possible to factor k moduli of the form
Ni = p2i qi in polynomial time.

Proof. Suppose that k ≥ 2 and i = 1, ..., k,
and the equation eix−Niyi = (ap2i +bq2i )zi, we
obtain ∣∣∣ ei

Ni
x− yi

∣∣∣ =
|(ap2i + bq2i )zi|

Ni
(2)

Let N = min Ni and suppose that yi < N δ and

|zi| <
√
2N1/2

|ap2i−bq2i |
. Sets |ap2i − bq2i | > pi. From

here, by using N1/3 < p < 21/3N1/3 and ap2i +

bq2i < N
2
3
+α where 0 < α < 1/3, we have

(ap2i + bq2i )|zi|
Ni

≤ (ap2i + bq2i )|zi|
N

<
(N

2
3
+α)
(√

2N1/2

N1/3

)
N

<
21/2N

5
6
+α

N

= 21/2N−
1
6
+α (3)

By applying Theorem 4, we substitute (3) in
(2), we obtain∣∣∣ ei

Ni
x− yi

∣∣∣ < 21/2N−
1
6
+α

We can see the relation between
∣∣∣ eiNix − yi∣∣∣ <

21/2N−
1
6
+α and |qαi − pi| < ε which is the

condition of Theorem 4. We now proceed to
prove the existence of integer x and yi. Let
ε = 21/2N−

1
6
+α and δ = k

6 − αk.

N δ · εk = 2k/2N δ− k
6
+αk = 2k/2

Since 23k/2 < 2
k(k−3)

4 · 3k for k ≥ 2, we get

N δ ·εk < 2
k(k−3)

4 ·3k by applying Theorem 4. It

follows that if x < N δ, then x < 2
k(k−3)

4 ·3k ·ε−k.
Summarizing for i = 1, ..., k, we have∣∣∣ ei

Ni
x− yi

∣∣∣ < ε, x < 2
k(k−3)

4 · 3k · ε−k

It follows the condition of Theorem 4 are ful-
filled will find x and yi for i = 1, ..., k using the
LLL algorithm.

Since 1 < |zi| <
√
2N1/2

|ap2i−bq2i |
this implies that

abz2i q =
[
S2

4N

]
for Si = eix − Niyi for each

i = 1, ..., k, we find qi = gcd
([

S2
i

4Ni

]
, Ni

)
.

This leads to the factorization of k moduli
N1, ..., Nk. This terminates the proof. �

Example 2. To illustrate our proposed attack,
we consider three moduli and three public expo-
nents as follows

N1 = 43849127683433842875172219879,

N2 = 37338153933306123915794589133,

N3 = 38907616162122691741849440007,

e1 = 39511040578961676511805087156,

e2 = 33781206734284556077483764081,

e3 = 33370721742581377240397285375.

Then, N = min(N1, N2, N3) =
37338153933306123915794589133. Since
k = 3, we get δ = k

6 − αk = 2
5 and

ε = 21/2N−
1
6
+α ≈ 0.0002192272918193153.
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Suppose we consider the parameter C as defined
in [Nitaj et al. (2014), Appendix A, page 196].
Let n = k = 3, we find

C =
[
3n+1·2

(n+1)(n−4)
4 ·ε−n−1

]
= 17533820149394491.

Let the lattice L spanned by the rows of the
following matrix

M =


1 −[Ce1N1

] −[Ce2N2
] −[Ce3N3

]

0 C 0 0
0 0 C 0
0 0 0 C

 .
From here, we execute the LLL algorithm upon
L, which gives a reduced basis with the matrix
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K =

 −268448596723 −167028992386 −4917963426 −106185527291
−654605070273 1406018496079 531004736379 −359359492007
−677045425593 877605625120 −2159196616321 846337749061
−1682298812257 519399713921 1031829553753 3337214576858

 .
Now, we obtain

K ·M−1 =

 −268448596723 −19155721381 −19233721343 −18233581353
−654605070273 −46710739016 −46900939938 −44462124029
−677045425593 −48312018365 −48508739518 −45986319161
−1682298812257 −120044014834 −120532820680 −114265198730

 .
From the first row, we deduce x =
268448596723, y1 = 19155721381,
y2 = 19233721343 and y3 = 18233581353.

By applying x and yi for i = 1, 2, 3, define Si =
eix−Niyi is an approximation of ap2i +bq2i . Ob-
serve that Lemma 2 and Theorem 5 obviously

implies abz2i qi =
[
S2
i

4Ni

]
for Si = eix − Niyi.

Then, we obtain

S1 = 483129855602780442189,

S2 = 406002912661669067233,

S3 = 439874805597543857154.

Next, for each i = 1, 2, ..., 3, we find[
S2
1

4N1

]
= 1330781646672,[

S2
2

4N2

]
= 1103685826194,[

S2
3

4N3

]
= 1243264582140.

Then, also for each i = 1, 2, 3, we find qi =

gcd
([

S2
i

4Ni

]
, Ni

)
and we obtain

q1 = 3080513071,

q2 = 2919803773,

q3 = 2960153767.

This leads us to the factorization of three mod-
uli N1, N2 and N3 which

p1 = 3772844893,

p2 = 3576017111,

p3 = 3625435439.

V. The Third Attack

Now, in this section, we present our third at-
tack. Suppose that we are given k moduli of
the form Ni = p2i qi. We consider the scenario
of the system of generalized key equations sat-
isfying eixi −Niy = (ap2i + bq2i )zi. We use the
combination of simultaneous Diophantine ap-
proximation and the LLL algorithm to acquire
the small unknown parameters of (y, xi) in or-
der to recover prime factor pi and qi from every
moduli Ni = p2i qi simultaneously. This attack
is for fixed value of y instead of fixed value of x
from the previous attack. In short, we are look-
ing for k integers xi and an integer y. Thus, we
come up with the following theorem.

Theorem 7. Suppose that k ≥ 2, Ni = p2i qi,
1 ≤ i ≤ k be k moduli each with the same size
N where N = max Ni. Assume for i = 1, ..., k
be k public exponents ei with min ei = Nβ.
Define δ = βk− 5k

6 −αk. Let ap2i +bq2i < N
2
3
+α

where 0 < α < 1/3 and gcd(a, b) = 1. If there
exist an integer y < N δ, k integers xi < N δ

and 1 ≤ |zi| <
√
2N1/2

|ap2i−bq2i |
such that eixi −Niy =

(ap2i + bq2i )zi, then the k moduli Ni = p2i qi can
be factored in polynomial time.

Proof. Suppose i = 1, ..., k with k ≥ 2, from the
equation eixi −Niy = (ap2i + bq2i )zi, we have∣∣∣Ni

ei
y − xi

∣∣∣ =
|(ap2i + bq2i )zi|

ei
(4)

Let N = max Ni and suppose that y < N δ

and |zi| <
√
2N1/2

|ap2i−bq2i |
and min ei = Nβ. We

set |ap2i − bq2i | > pi, then we use the relation

N1/3 < p < 21/3N1/3 and ap2i + bq2i < N
2
3
+α
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where 0 < α < 1/3, we have

|(ap2i + bq2i )zi|
ei

≤ (ap2i + bq2i )|zi|
Nβ

<
(N

2
3
+α)
( √

2N1/2

|ap2i−bq2i |

)
Nβ

<
21/2N

5
6
+α

Nβ

= 21/2N
5
6
+α−β (5)

By applying Theorem 4, we substitute (5) in
(4), we obtain∣∣∣Ni

ei
y − xi

∣∣∣ < 21/2N
5
6
+α−β.

We can see the relation between
∣∣∣Niei y − xi∣∣∣ <

21/2N
5
6
+α−β and |qαi − pi| < ε which is the

condition of Theorem 4.

Next, we need to show the existence of integer
y and the integers xi. Let ε = 21/2N

5
6
+α−β,

δ = βk − 5k
6 − αk. Then, we obtain

N δ · εk = N δ(21/2N
5
6
+α−β)k

= 2k/2(N δ+ 5
6
k+αk−βk)

= 2k/2.

Since 22
k/2

< 2
k(k−3)

4 · 3k for k ≥ 2, then by

applying Theorem 4, we have N δ ·εk < 2
k(k−3)

4 ·
3k . It follows that if y < N δ, then y < 2

k(k−3)
4 ·

3k · ε−k.
Summarizing for i = 1, ..., k, we get∣∣∣Ni

ei
y − xi

∣∣∣ < ε and y < 2
k(k−3)

4 · 3k · ε−k,

for i = 1, ..., k.

It follows the condition of Theorem 4 are ful-
filled will find y and xi for i = 1, ..., k using the
LLL algorithm.

Next, by using the equation eixi − Niy =

(ap2i + bq2i )zi and since 1 < |zi| <
√
2N1/2

|ap2i−bq2i |

and this implies that abZ2q =
[
S2

4N

]
for

Si = eixi − Niy for every i = 1, ..., k, we

compute qi = gcd
([

S2
i

4Ni

]
, Ni

)
. Therefore,

it is possible to factor k moduli of the form
Ni = p2i qi. This terminates the proof. �

Example 3. To illustrate our third attack, we
consider three moduli and three public expo-
nents as follows

N1 = 27303248661520705484694992809,

N2 = 41780032879859661519245731019,

N3 = 37592432260341225657259451123,

e1 = 18259248695049659113144738243,

e2 = 32208520489776939471112369809,

e3 = 270619248162960428426135084485.

Then, N = max(N1, N2, N3) =
41780032879859661519245731019. We
also obtain min(e1, e2, e3) = Nβ with
β ≈ 0.9874397727. If k = 3, then we
have δ = βk − 5k

6 − αk = 0.3623193180 and

ε = 21/2N
5
6
+α−β ≈ 0.000494164679491052.

Again, following the work in [Nitaj et al.
(2014), Appendix A, page 196], suppose the
value n = k = 3, then we have the following
parameter C

C =
[
3n+1·2

(n+1)(n−4)
4 ·ε−n−1

]
= 679153932326420.

Consider the matrix that spanned the lattice L
as follows.

M =


1 −[Ce1N1

] −[Ce2N2
] −[Ce3N3

]

0 C 0 0
0 0 C 0
0 0 0 C

 .
From here, we execute the LLL algorithm upon
L, which gives a reduced basis with the matrix

199



ASM Science Journal, Volume 12, Special 1Issue , 2019 for IQRAC2018

K =

 −1009511951 −724069510 −118463291 −963514093
−116219833917 219478836730 233252159583 −70657952571
169220144359 236001315130 −147703508721 −337730794043
−722863969416 480683724660 −732230635836 486975914092

 .
Now, we obtain

K ·M−1 =

 −1009511951 −1509533951 −1309511951 −140233963
−116219833917 −173784753022 −150757265733 −16144403118
169220144359 253036680596 219507853442 23506815783
−722863969416 −1080906177195 −937679842185 −100414937179

 .
Note that, we deduce the integers y =
1009511951, x1 = 1509533951, x2 =
1309511951 and x3 = 140233963 from the first
row, respectively.

By applying y and xi for i = 1, 2, 3, define Si =
eixi − Niy is an approximation of ap2i + bq2i .
Hence, by using Lemma 2 and Theorem 5, this

implies that abZ2q =
[
S2

4N

]
for Si = eixi−Niy.

Then, we get

S1 = 41517689924272027734,

S2 = 55131885559405179290,

S3 = 51383529854302493082.

Next, for each i = 1, 2, 3, we find[
S2
1

4N1

]
= 15783090486,[

S2
2

4N2

]
= 18187664034,[

S2
3

4N3

]
= 17558501682.

Next, we compute qi = gcd
([

S2
i

4Ni

]
, Ni

)
for ev-

ery i = 1, 2, 3, thus, obtains

q1 = 2630515081,

q2 = 3031277339,

q3 = 2926416947.

This leads us to the factorization of three mod-
uli N1, N2 and N3 which

p1 = 3221712367,

p2 = 3712543511,

p3 = 3584116447.

VI. Conclusion

In conclusion, we proposed three new attacks
on the modulus of the form N = p2q. For the
first attack, if e satisfying the generalized key
equation eX − NY = (ap2 + bq2)Z such that
|ap2 − bq2| < N1/2, then the modulus N = p2q
can be factored in polynomial time using con-
tinued fraction expansion together with some
restrictions on some parameters. We have suc-
cessfully proved the existence of probabilistic
polynomial time algorithm which output fac-
tor p and q and the scenario of weak condi-
tions that would enable the factoring N = p2q
to be easy. One can run the proposed algo-
rithm to test whether the key belongs to the
corresponding weak class or not to ensure that
one does not accidentally create a weak key
during key generation process. Then, we fo-
cused on the system of generalized key equa-
tions of the form eix − Niyi = (ap2i + bq2i )zi
and eixi − Niy = (ap2i + bq2i )zi for the sec-
ond and third attack respectively. If x, xi,
y, yi and zi are suitably small, then the sec-
ond and third attacks showed that the k mod-
uli Ni = p2i qi can be factored simultaneously
in polynomial time using the combination of
simultaneous Diophantine approximation and
the LLL algorithm.
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