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In the presence of unknown heteroscedasticity structure and anomalous observations such as
High Leverage Points (HLPs), the variance-covariance matrix of the ordinary least squares
(OLS) estimator become bias and inconsistent in linear as well as in fixed effect (FE) panel
data model. As a remedial measure, we propose Robust Heteroscedasticity Consistent
Covariance Matrix (RHCCM) estimator based on Weighted Least Square in panel data model.
In the proposed methods, weights are determined from HLPs detection methods so that the
effect of HLPs can be minimized by assigning lower weights to HLPs. The numerical examples
and simulation results indicate that the proposed RHCCM based on Fast Modified generalized
Residuals (FMGt) offers substantial improvement over some existing estimators.
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I. Introduction

Fixed effect (FE) panel data model is used
when the individual specific effect (unobserved
time invariant effects) is correlated with the
explanatory variables (Vı́̌sek, 2015). The or-
dinary least squares (OLS) method is used to
estimate the parameters of the model after the
data transformation by mean centering (de-
meaned transformation). However, the OLS
can strongly be biased and inconsistent in the
presence of high leverage points (HLPs) and
heteroscedasticity (unequal variances of the er-
rors). HLPs referred to observations that are
far away from the majority of the data points
in X-direction. Many researches are avail-
able regarding outlying observations problem
in FE panel data regression model, such as
(Bakar and Midi, 2015, Bramati and Croux,
2007, Maronna et al., 2006, Verardi and Wag-

ner, 2011). Their methods only addressed the
problem of outliers but the combined problem
of outliers particularly HLPs and heteroscedas-
ticity in FE model is still missing in the litera-
ture.

Recently, least weighted squares (LWS) pro-
posed by Vı́̌sek (2015) is used to estimate the
model with FE in the presence of outliers in
panel data. The shortcoming of this method is
that, it make used of classical centering (mean
centering) method and when there exist het-
eroscedasticity of unknown form it is ineffi-
cient and produces large variances which lead
to inconsistency of the Variance-covariance ma-
trix. Similarly, problem of heteroscedasticity in
linear regression has been addressed by many
researchers (Greene, 2007, Habshah et al.,
2009, Rana et al., 2012, White, 1980). The
heteroscedasticity consistent covariance matrix
(HCCM) estimator denoted by HC0 proposed
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by White (1980) is used to remedy the prob-
lem heteroscedasticity of unknown form. There
are many versions of HC0 estimator proposed
by MacKinnon and White (1985), Cribari-Neto
(2004) and Cribari-Neto et al. (2007) denoted
by HC1, HC3, HC4 and HC5 respectively.
Similarly, when heteroscedasticity comes along
with the presence of HLPs in the data set, the
HCCM estimator is bias which tends to per-
form poorly by providing unreliable parameter
estimates.

The estimation strategy used for a model with
heteroscedasticity of unknown form in the pres-
ence of HLPs as suggested by Furno (1996) is
to perform ordinary least squares (OLS) esti-
mation, and then employed a robust HCCM
estimator which used residuals from weighted
least squares (WLS) instead of OLS. The short-
coming of this method is that, the weighting
method (hat matrix) used is inefficient as it suf-
fers from masking and swamping effect (Hab-
shah et al., 2009). This motivated us to pro-
pose weighting methods which are more effi-
cient than hat matrix, in order to remedy the
effects of HLPs and heteroscedasticity in FE
panel data model.

In this study three robust weighting methods
based on HLPs detection measures were used
for robust HCCM estimator in FE panel data
regression model. In this article, a more effi-
cient robust weighting technique is used in or-
der to successfully down weight the HLPs in a
data set. The weights are based on; Robust ma-
halanobis distance based on minimum volume
ellipsoid (RMD(MVE)), Diagnostic robust gen-
eralized potential based on index set equality
(DRGP(ISE)) and proposed fast modified gen-
eralized studentized residuals (FMGt). Simi-
larly, MM-centering method for data transfor-
mation will be employed to reduce the effects
of HLPs.

Section 2 introduced the least weighted Square
(LWS) estimation method. Section 3 explained
classical HCCM and robust HCCM estimator.
Section 4 described the propose robust estima-
tion methods. The simulation study is pre-
sented in Section 5 and the real data examples

are given in Section 6. Section 7 presents the
conclusion.

II. Least Weighted Squares
(LWS) Estimator

Vı́̌sek (2015) proposed an estimation technique
for the fixed effect (FE) panel data model
termed least weighted squares (LWS). Consider
a FE model as,

yit = αi + x′itβ + eit (1)

where, i = 1, 2, . . . , n, t = 1, 2, . . . , T , yit
are the response variables, xit is the kth ex-
planatory variables, αi is the unobserved time-
invariant effects and eit is the error term that is
assumed to be normal, uncorrelated across in-
dividual units and time. Also, cov (xit, αi) 6= 0
and αi is usually eliminated when the data
is transformed by demeaned transformation
within each time series by mean given as:

(yit − yi.) = (xit − xi.)β + eit (2)

where, yi. = 1
T

∑T
t=1 yit, xi.=

1
T

∑T
t=1 xit and

Equation (2) becomes;

ỹit = x̃itβ + eit (3)

where, ỹit = yit − yi. and x̃it = xit − xi. The
least weighted squares (LWS) estimator pro-
posed by Vı́̌sek (2015) is obtained by first com-
puting the residual of the (i,t)thobservations
from Equation (1) as:

rit = yit − x′itβ.

By denoting the qth squared residuals order
statistic by r2(q)(β), where q = 1,2,. . . ,nT so
that,

r2(1) (β) ≤ r2(2) (β) ≤ · · · ≤ r2(n T )(β),

followed by minimizing the weighted sum of
squares residuals as,

WSS (β,−→w ) =

nT∑
q=1

wq(yq − xqβ )2
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where, weight (wq) is defined as wq ∈ [0, 1] for
q = 1,2,. . . , nT for more details see (Vı́̌sek,
2015). The LWS estimator is given as:

β̂ (LWS) = argmin
β

nT∑
q=1

wq r
2
q (β)

= (X ′WX)
−1
X ′Wy

where, W is a diagonal matrix of wq. The ab-
solute residuals (r(it) (β)′ s) value distribution
function denoted by Fnβ (r), its derivation shows

that β̂ (LWS) is among the solutions of the
normal equations, see Vı́̌sek (2011)

n∑
i=1

T∑
t=1

w
(
FnTβ (|rit (β)|)

)
xit(yit − x̃itβ) = 0

It has been proven that β̂ (LWS) is consistent
under certain assumptions.

III. HCCM and Robust
HCCM Estimators

White (1980) proposed the heteroscedasticity
consistent covariance matrix (HCCM) estima-
tor known as HC0 where he replaced σ2q with

ê2q in the covariance matrix of β̂ as:

HC0 = (x′x)
−1
x′Φ̂0x(x′x)

−1
(4)

where, Φ̂0= diag ê2q}. Different adjustment of
HC0 was done by many researchers which give
rise to HC1, HC2 and HC3. They are generally
biased for small sample sizes, see (Furno, 1996,
Hausman and Palmer, 2012, Lima et al., 2009).
This research will only focus on HC4 and HC5.
The HC4 proposed by Cribari-Neto (2004) was
build under HC3, which is defined as follows:

HC4 = (x′x)
−1
x′Φ̂4x(x′x)

−1
(5)

where, Φ̂4= diag
{

ê2q

(1−hq)δq

}
for q = 1, . . . , nT

with δq= min
{

4,
hq
h

}
, which control the dis-

count factor of theq th squared residuals, given
by the ratio of hq and the average of hq’s (h).

Since 0 < 1 − hq < 1 and δq > 0 it implies

that 0 < (1− hq)
δq < 1. The larger hq is rel-

ative to h, the more the HC4 discount factor
inflates the q th squared residual. The trunca-
tion at 4 amounts to twice what is used in the
definition of HC3; that is, δq = 4 when hq >
4h = 4p/nT . The result obtained by Cribari-
Neto (2004) suggested HC4 inference in finite
sample size relative to HC3.
Similarly, another modification of the exponent
(1− hq) of HC4 was proposed by Cribari-Neto
et al. (2007) to control the level of maximal
leverage. The estimator is termed HC5, defined
as:

HC5 = (x′x)
−1
x′Φ̂5x(x′x)

−1
(6)

where the value of Φ̂5= diag

{
ê2q√

(1−hq)αq

}
for q = 1, . . . , nT with the quantity

αq= min
{

hq
h , max

{
4, khmax

h

}}
, which deter-

mine the amount of increased of the q th squared
residual, given by the ratio between hmax (max-
imal leverage) and h (mean leverage value of

hq’s). When
hq
h ≤4 it follows that αq =

hq
h .

Also, since 0 < 1 − hq < 1 and αq > 0, it
implies that 0 < (1− hq)

αq < 1 and k is a con-
stant ranges between 0 < k < 1 where HC5
reduces to HC4 when k = 0. K value was sug-
gested to be chosen as 0.7 by Cribari-Neto et al.
(2007) following his simulation result that leads
to efficient quasi-t inference.
Furno (1996) suggested using weighted least
squares (WLS) regression residuals instead of
OLS residuals used by White (1980) in HC0
estimator. The weight is based on the hat ma-
trix (hi) and the robust (weighted) version of
HC0 is defined as:

HC0W = (x′Wx)
−1
x′W Φ̂0wWx(x′Wx)

−1

(7)
where, W is an n× n diagonal matrix with,

wq = min (1, c/hq) , (8)

and c is the cutoff point, c = 1.5p
nT , p is the num-

ber of parameters together with the intercept,
Φ̂0w= diag {ẽ2q} with ẽq being the qth residuals
from weighted least squares. Note that, non-
leveraged observations are weighted by 1 and
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leveraged observations are weighted by (c/hq)
to reduce their intensity and wq is considered
as the weight, so that the WLS estimator of β
is,

β̃ = (X ′WX)
−1
X ′WY.

The robust HCCM estimators for the HC4 and
HC5 based on Furno’s weighting method are
HC4W and HC5W define as:

HC4W = (x′Wx)
−1
x′W Φ̂4wWx(x′Wx)

−1

(9)

where, Φ̂4w= diag

{
ẽ2q

(1−h∗q)
δ∗q

}
for

q = 1, . . . , nT with δ∗q= min
{

4,
h∗q
h∗

}
, and h∗q is

the qth diagonal elements of the weighted hat
matrix Hw =

√
Wx(x′Wx)−1x′

√
W . And,

HC5W = (x′Wx)
−1
x′W Φ̂5wWx(x′Wx)

−1

(10)

where the values of Φ̂5w= diag

{
ẽ2q√

(1−h∗q)
α∗q

}
for q = 1, . . . , nT with the expo-

nent α∗q= min
{

h∗q
h∗ , max

{
4, kh∗max

h∗
}}

. The

Furno’s weighted least square method de-
scribed here denoted by WLSF will be applied
to the transformed FE panel data model in
Equation (3) and obtain an estimate which is
based on Furno’s weighting method.

IV. Proposed Robust HCCM
Estimators

The idea of Furno (1996) was employed to for-
mulate new RHCCM estimator base on HLPs
identification weighting method; Robust maha-
lanobis distance based on minimum volume el-
lipsoid (RMD(MVE)), diagnostic robust gen-
eralized potential based on index set equal-
ity (DRGP(ISE)) and fast modified generalized
studentized residualsl (FMGt). These methods
are more efficient than the hat matrix used by
Furno for the identification of HLPs (Habshah
et al., 2009). We also employed robust center-
ing method (MM-centering) for the data tran-
formation instead of classical mean-centering
used by Vı́̌sek (2015) in order to reduce the
effect of HLPs.

MM-centering is a robust technique of data
transformation proposed by Bakar and Midi
(2015), the centering involves transformation of
panel data within each time series. The usual
mean centering is highly sensitive to HLPs
(Bramati and Croux, 2007). As an alterna-
tive, the centering using median is put forward.
However, for uncontaminated data median cen-
tering was found to have low efficiency than
the mean and causes non linearity to the trans-
formed data (Maronna et al., 2006). This af-
fects the efficiency of robust estimators when
there is no HLPs. The MM-centering method
is introduced in order to bring back linearity
into the transformed data and also to provide
high efficiency.
The MM-estimate of location was originally
proposed by Yohai (1987). The goal was to
produce a high efficiency and high breakdown
point estimator. The procedure is given by:
Firstly, compute S-estimates of location and
covariance to obtain the preliminary scale es-
timate, σ̂n:

σ̂n = min
t
sn (t).

The scale estimate is obtained by minimizing
an M-estimate of scale. Thus, the initial esti-
mate has a high breakdown point of 50% and
it is also equivariance. The location S-estimate
µ̂n is defined by:

µ̂n = arg mintsn (t).

Tukey’s Bisquare weight function was em-
ployed to down weight HLPs, where ρ is given
as:

ρ (x) =

{ 1
6c4
x6 − 1

2c2
x4 + 1

2x
2, if |x| ≤ c

c2

6 , if |x| > c

where c is the tuning constant. At Gaussian
errors, the initial estimator has only 28.7% ef-
ficiency (Ruppert, 1992). By fixing the scale es-
timate, the shape and location are re-estimated
by a high efficient M-estimator, this provides
95% efficiency in a central model (Ruppert,
1992). This procedure of data transformation
by the MM-estimate of location is called MM
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centering. The demeaned transformed data
within each time series by MM centering is now
given as:

yit − µ̂mm {yit} =
(
x
(k)
it − µ̂mm

{
x
(k)
it

})
β + eit

(11)
for 1 ≤ t ≤ T , 1 ≤ i ≤ n, and 1 ≤ k ≤ K,
where x(k) is the kth explanatory variables.

A. Robust HCCM Estimator based
on RMD(MVE)

Mahalanobis (1936) introduced a diagnos-
tic measure of the deviation of an observa-
tion from its center named Mahalanobis Dis-
tance (MD), in which the independent vari-
ables of the qth observations are presented
as xq = (1, xq1, xq2, . . . , xqk) = (1, Rq) so
that Rq = (xq1, xq2, . . . , xqk) will be k -
dimensional row vector, where the mean and
covariance matrix vector are R = 1

nT

∑nT
q=1Rq

and CV = 1
nT−1

∑nT
q=1

(
Rq −R

)′
(Rq − R) re-

spectively. The MD for the qth points is given
as:

MDq =

√(
Rq −R)

′
(CV )−1(Rq −R

)
(12)

where, q = 1, 2, . . . , nT . The average vector
R and covariance matrix CV in Equation (12)
are not robust and easily affected by HLPs.
Rousseeuw (1984) recommended using Robust
Mahalanobis Distance (RMD) as in Equation
(12) with slight modification where the R and
CV are obtained from minimum volume el-
lipsoid (MVE). The corresponding CV is pro-
vided by the ellipsoid and multiplied by a suit-
able factor in order to obtain consistency. We
suggest the cut off value of RMD as in Equation
(13).

cd = median (RMDq)+3.MAD(RMDq) (13)

where, MAD stands for median absolute
deviation. The weight obtained by this
RMD(MVE) method is given by:

wqr = min (1, cd/RMDq), (14)

so that HLPs are weighted by (cd/RMDq) and
non leverage by 1. To obtain the RHCCM esti-
mator based on RMD(MVE) weighting method
denoted by WLSRMD, we replace Equation (8)
by (14) and follow Furno’s robust HCCM esti-
mation method as discussed in Section (4.1).

B. Robust HCCM Estimator based
on DRGP(ISE)

Lim and Midi (2016) proposed diagnostic ro-
bust generalized potential (DRGP) based on
index set equality (ISE) in order to reduce the
effect of swamping/masking and computional
complexity of DRGP based on minimum vol-
ume ellipsoid (MVE). The ISE was developed
from the fast minimum covariance determinant
(MCD). ISE was tested and found to execute
highly faster in the estimation of robust esti-
mator of scale and location. Thus, ISE has
faster running time compared to MVE (Lim
and Midi, 2016). The DRGP(ISE) consist
of two steps whereby RMD based on ISE is
utilised to detect the suspected HLPs.

The generalized potential (p̂q) is employed on
the second step to check all the suspected iden-
tified HLPs, those possess a low leverage point
will be put back to the ‘R’ group. This tech-
nique continued until all points of the ‘D’ group
has been checked to confirm whether they can
be referred as HLPs. The DRGP(ISE) denoted
as DRGP q is defined as follows:

DRGP q =

 h
(−D)
q for q ∈ D
h
(−D)
q

1−h(−D)
q

for q ∈ R
(15)

The cut-off point for DRGPq is given by:

CDRGPq = median(DRGP q) + 3 QnT (DRGP q)
(16)

where QnT=c{|xq−xj |; < j}(k) is a pair wise
order statistic for all distance proposed by
Rousseeuw and Van Zomeren (1990) where k =
h
. C2 ≈ h

. C2/4 and h = [nT/2] + 1. They
make used of c = 2.2219, as this value will
provide QnT a consistent estimator for gaus-
sian data. If some identified DRGP q did not
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exceed CDRGPq then, the case with the least
DRGP q will return to the estimation subset for
re-computation of DRGP q. The values of di-
agnostic robust generalized potential (DRGP)
based on final ‘D’ set is the DRGP(ISE) rep-
resented by DRGP q and the ‘D’ points will
be declared as HLPs. Now, the DRGP(ISE)
weight can be obtained as follows:

wqd = min(1, CDRGPq/DRGPq) (17)

where, the HLPs are weighted by
(CDRGPq/DRGPq) and non leverage by
1. We also replace Equation (8) by (17) and
employed RHCCM estimation methods of
Furno as discussed in Section (4.1) to obtain
the RHCCM estimator based on DRGP(ISE)
weighting method denoted by WLSDRGP .

C. Robust HCCM Estimator based
on FMGt

We suspect that the proposed RHCCM based
on DRGP(ISE) weighting method will be af-
fected by good HLPs because the RMD(ISE)
only detect HLPs and unable to classify obser-
vations into good and bad HLPs. Hence good
observations will be given low weight and the
efficiency of the RHCCM estimator tends to
decrease as the number of good leverage points
increases. As such we propose to firstly clas-
sify observations into regular, good and bad
HLPs, and vertical outliers, before formulating
weighting method.

The proposed classification method is similar
to Alguraibawi et al. (2015) with slight modi-
fication whereby the modified generalized stu-
dentized residual (MGtq) is established based
on the Reweighted Least Squares (RLS) and
DRGP(ISE) as initial estimates to make com-
putation very fast compared to DRGP(MVE).
Subsequently, the MGtq is given by,

MGtq =


êq(R∗)

σ̂
R∗−1
√

1−h∗∗
q(R∗)

, for q ∈ R∗

êq(R∗)
σ̂
R∗√1+h∗∗

q(R∗)

, for q /∈ R ∗

(18)
where êq(R∗), σ̂(R∗) are the OLS residuals and
residuals standard error for remaining set R,

respectively, once the R∗ set is identified based
on RLS and DRGP(ISE). The cut off point
(CMGtq) is calculated as follows:

CMGtq = median (MGtq) + cMAD(MGtq)
(19)

The classification of observations into the four
categories is called fast modified generalized
studentized residuals (FMGt). The classifica-
tion scheme is as follows:

1. Regular observation (RO): An observation
is declared as regular observation if ;

|MGtq| ≤ CMGtq and |DRGPq| ≤ CDRGPq

2. Vertical outlying observation (VO): An ob-
servation is declared as VO if ;

|MGtq|> CMGtq and |DRGPq| ≤ CDRGPq

3. Good leverage observation (GLO): An ob-
servation is declared as GLO if ;

|MGtq| ≤ CMGtq and |DRGPq|> CDRGPq

4. Bad leverage observation (BLO): An ob-
servation is declared as BLO if ;

|MGtq| > CMGtq and |DRGPq| > CDRGPq

Once the bad HLPs and vertical outliers are
identified, the weight is defined as:

wqr = min (1, CMGtq/MGtq), (20)

The RHCCM estimator based on FMGt
weight denoted as WLSFMGt is then formu-
lated by replacing Equation (8) by (20). It is
important to note that the proposed WLSFMGt

is expected to be more efficient because the
weighting function is based only on VO and
BLOs.

V. Simulation Study

Monte Carlo simulation is used to evaluate the
performances of proposed weighting method
(WLSRMD,WLSDRGP ,WLSFMGt) in FE panel
data regression model. The response vari-
able is set base on Equation (1) where eit ∼
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N
(
0, σ2e

)
, αi ∼ N (0, 5) and the vector of co-

efficients β equal to a vector of ones. Fol-
lowing Vı́̌sek (2015) the independent variables
(xit1, xit2, xit3) are generated from standard
normal distribution. Three sample sizes n =
5, 10, 15 with the corresponding t = 10, 15 20
were replicated twice to form n = 10, 20, 30
and t = 20, 30, 40 respectively, in order to cre-
ate heteroscedasticity. The skedastic function
is defined as σ2e = exp{c1xit1} (Lima et al.,
2009) where the value of c1 = 0.45 was cho-
sen such that λ ≈ 87.5 and will be constant
among the sample sizes. The strength (de-
gree) of heteroscedasticity is measured by λ =
max

(
σ2e
)
/min(σ2e) whereby, for homoscedas-

ticity λ = 1.

The data were contaminated by introducing
high leverage points (HLPs) which are ran-
domly generated from N (1, 10) , at 0%, 10%
and 20% contamination level with R=1000
replications. The most efficient and best
method is the one with lowest bias, lowest
standard error of the estimate, lowest stan-
dard error of HC4 and HC5. Results from
Table (1) to (3) show the performance of the
proposed methods (WLSRMD, WLSDRGP and
WLSFMGt) and the existing methods (LWS
and WLSF ), at different sample sizes and
HLPs contamination level. The results show
that all the proposed methods were more effi-
cient than the existing methods, by providing
smaller bias, and standard error of HC4 and
HC5. However, justification based on stan-
dard error of the estimates here is improper
and inefficient, as the structure of heteroscedas-
ticity is unknown. Therefore, the estimation
will be based on the HCCM estimator (HC4
and HC5). The results of these two methods
are close to each other. The HC4 and HC5
based on WLSFMGt was found to be the best
method due to the smaller value of bias, and
standard error of HC4 and HC5. Figures 1-
3 show the performance of all the methods at
20% HLPs contamination level with different
sample sizes, where WLSFMGt is the best fol-
lowed by WLSDRGP, WLSRMD, WLSF , and fi-
nally LWS.

Table 1: Simulation result of panel data esti-
mates for n=10,t=20

Con.
Level

Estimator Bias SE of
Esti-
mates

Stand. Error

HC4 HC5

LWS b1

b2

b3

0.0006
0.0021
0.0216

0.1476
0.1480
0.1460

0.0444
0.0468
0.0454

0.0444
0.0468
0.0454

0 %
HLPs

WLS F b1

b2

b3

0.0024
0.0059
0.0234

0.1342
0.1344
0.1334

0.0185
0.0187
0.0184

0.0185
0.0187
0.0184

WLS RMD b1

b2

b3

0.0021
0.0064
0.0245

0.1305
0.1308
0.1297

0.0197
0.0203
0.0196

0.0197
0.0203
0.0196

WLS DRGP b1

b2

b3

0.0019
0.0062
0.0243

0.1317
0.1319
0.1309

0.0190
0.0194
0.0189

0.0190
0.0194
0.0189

WLS FMGt b1

b2

b3

0.0044
0.0062
0.0241

0.1252
0.1255
0.1245

0.0174
0.0179
0.0174

0.0174
0.0179
0.0174

LWS b1

b2

b3

0.2832
0.3042
0.2437

0.3172
0.3095
0.3111

0.2323
0.2087
0.2297

0.2323
0.2087
0.2297

10%
HLPs

WLS F b1

b2

b3

0.2284
0.2660
0.2310

0.2782
0.2738
0.2745

0.0841
0.0774
0.0755

0.0841
0.0774
0.0755

WLS RMD b1

b2

b3

0.2590
0.2999
0.2646

0.2733
0.2694
0.2690

0.0915
0.0855
0.0842

0.0915
0.0855
0.0842

WLS DRGP b1

b2

b3

0.1088
0.1523
0.1152

0.2709
0.2660
0.2668

0.0826
0.0756
0.0747

0.0826
0.0756
0.0747

WLS FMGt b1

b2

b3

0.0025
0.0302
0.0285

0.2017
0.2180
0.2186

0.0478
0.0448
0.0453

0.0479
0.0448
0.0453

LWS b1

b2

b3

0.1941
0.1739
0.1830

0.3640
0.3559
0.3550

0.2395
0.2495
0.2549

0.2395
0.2495
0.2549

20%
HLPs

WLS F b1

b2

b3

0.1023
0.1142
0.1351

0.3228
0.3231
0.3131

0.0860
0.0874
0.0879

0.0860
0.0874
0.0879

WLS RMD b1

b2

b3

0.1041
0.1213
0.1395

0.2901
0.2921
0.2927

0.0849
0.0861
0.0867

0.0849
0.0861
0.0867

WLS DRGP b1

b2

b3

0.0714
0.0755
0.0628

0.2720
0.2749
0.2556

0.0649
0.0667
0.0670

0.0649
0.0667
0.0670

WLS FMGt b1

b2

b3

0.0131
0.0304
0.0358

0.2198
0.2144
0.2018

0.0516
0.0530
0.0539

0.0516
0.0530
0.0539
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Table 2: Simulation result of panel data esti-
mates for n=20,t=30

Con.
Level

Estimator Bias SE of
Esti-
mates

Stand. Error

HC4 HC5

LWS b1

b2

b3

0.0116
0.0012
0.0157

0.0979
0.0981
0.0977

0.0166
0.0165
0.0162

0.0166
0.0165
0.0162

0%
HLPs

WLSF b1

b2

b3

0.0143
0.0031
0.0176

0.0902
0.0902
0.0900

0.0081
0.0081
0.0081

0.0081
0.0081
0.0081

WLSRMD b1

b2

b3

0.0155
0.0038
0.0172

0.0874
0.0875
0.0874

0.0084
0.0084
0.0084

0.0084
0.0084
0.0084

WLSDRGP b1

b2

b3

0.0152
0.0035
0.0172

0.0883
0.0883
0.0881

0.0082
0.0082
0.0082

0.0082
0.0082
0.0082

WLSFMGt b1

b2

b3

0.0167
0.0047
0.0181

0.0838
0.0839
0.0838

0.0074
0.0073
0.0073

0.0074
0.0073
0.0073

LWS b1

b2

b3

0.2585
0.2363
0.1920

0.3840
0.3221
0.3210

0.2433
0.2424
0.2422

0.2433
0.2424
0.2422

10%
HLPs

WLSF b1

b2

b3

0.2236
0.2080
0.1871

0.2817
0.2963
0.2799

0.1210
0.1209
0.1205

0.1210
0.1209
0.1205

WLSRMD b1

b2

b3

0.2140
0.2017
0.1780

0.2785
0.2738
0.2741

0.1021
0.1020
0.1020

0.1021
0.1020
0.1020

WLSDRGP b1

b2

b3

0.1276
0.1221
0.1025

0.2597
0.2598
0.2598

0.0770
0.0765
0.0762

0.0770
0.0765
0.0762

WLSFMGt b1

b2

b3

0.0211
0.0148
0.0384

0.1937
0.1943
0.1944

0.0360
0.0354
0.0352

0.0360
0.0354
0.0352

LWS b1

b2

b3

0.1511
0.1786
0.1751

0.3715
0.3871
0.3858

0.2766
0.2756
0.2793

0.2766
0.2756
0.2793

20%
HLPs

WLSF b1

b2

b3

0.1267
0.1294
0.1210

0.3521
0.3520
0.3527

0.0942
0.0948
0.0941

0.0942
0.0948
0.0941

WLSRMD b1

b2

b3

0.0930
0.0875
0.0901

0.2987
0.2987
0.2950

0.0927
0.0920
0.0924

0.0927
0.0920
0.0924

WLSDRGP b1

b2

b3

0.0618
0.0522
0.0627

0.2500
0.2500
0.2506

0.0593
0.0593
0.0593

0.0593
0.0593
0.0593

WLSFMGt b1

b2

b3

0.0201
0.0143
0.0363

0.2079
0.2079
0.2085

0.0485
0.0484
0.0484

0.0485
0.0484
0.0484

Table 3: Simulation result of panel data esti-
mates for n=30,t=40

Con.
Level

Estimator Bias SE of
Esti-
mates

Stand. Error

HC4 HC5

LWS b1

b2

b3

0.0063
0.0120
0.0015

0.0939
0.0937
0.0938

0.0126
0.0126
0.0127

0.0113
0.0113
0.0113

0%
HLPs

WLSF b1

b2

b3

0.0045
0.0120
0.0021

0.0927
0.0926
0.0927

0.0107
0.0107
0.0107

0.0107
0.0107
0.0107

WLSRMD b1

b2

b3

0.0072
0.0146
0.0047

0.0922
0.0921
0.0922

0.0107
0.0107
0.0107

0.0107
0.0107
0.0107

WLSDRGP b1

b2

b3

0.0072
0.0146
0.0046

0.0923
0.0922
0.0923

0.0107
0.0101
0.0107

0.0107
0.0101
0.0107

WLSFMGt b1

b2

b3

0.0071
0.0151
0.0143

0.0914
0.0913
0.0914

0.0105
0.0105
0.0105

0.0105
0.0105
0.0105

LWS b1

b2

b3

0.2976
0.3481
0.3741

0.3424
0.3423
0.3421

0.2318
0.2317
0.2325

0.2318
0.2317
0.2325

10%
HLPs

WLSF b1

b2

b3

0.2686
0.2792
0.2908

0.2876
0.2819
0.2832

0.1582
0.1592
0.1608

0.1582
0.1592
0.1608

WLSRMD b1

b2

b3

0.2070
0.2202
0.2329

0.2685
0.2619
0.2634

0.1168
0.1170
0.1170

0.1168
0.1170
0.1170

WLSDRGP b1

b2

b3

0.1510
0.1645
0.1737

0.2125
0.2244
0.2451

0.0839
0.0856
0.0856

0.0839
0.0856
0.0856

WLSFMGt b1

b2

b3

0.0330
0.0208
0.0283

0.1990
0.1986
0.1988

0.0420
0.0416
0.0425

0.0420
0.0416
0.0425

LWS b1

b2

b3

0.1855
0.2048
0.1908

0.3935
0.3984
0.3906

0.2324
0.2336
0.2331

0.2324
0.2336
0.2331

20%
HLPs

WLSF b1

b2

b3

0.1082
0.1023
0.1064

0.2966
0.2979
0.2979

0.1179
0.1184
0.1182

0.1179
0.1184
0.1182

WLSRMD b1

b2

b3

0.0786
0.0783
0.0708

0.2732
0.2729
0.2833

0.8175
0.8180
0.8179

0.8175
0.8180
0.8179

WLSDRGP b1

b2

b3

0.0417
0.0423
0.0265

0.2330
0.2342
0.2343

0.5751
0.5804
0.5793

0.5751
0.5804
0.5793

WLSFMGt b1

b2

b3

0.0137
0.0103
0.0246

0.2160
0.2170
0.2173

0.0523
0.0512
0.0513

0.0523
0.0512
0.0513
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Figure 1: plot of HC5 SE for n=10,t=20

Figure 2: plot of HC5 SE for n=20,t=30

Figure 3: plot of HC5 SE for n=30,t=40

VI. Numerical Examples

In this section, the proposed robust methods
(WLSRMD, WLSDRGP and WLSFMGt) and
the existing robust methods (LWS, WLSF ) will
be applied to a real panel data set in order to
evaluate their performances. Firstly, we con-
sider a set of grunfeld investment data contain-
ing 200 observations taken from Kleiber and
Zeileis (2008). The data represent investment
of 10 firms over 20 years (1935 – 1954), with
investment as the response variable. Value of
firms and value of the firm’s capital stock are
treated as explanatory variables. This data set
was diagnosed using FMGt with DRGP and
found that it contains 46 outlying observations,
where 19 of them are GLO, the remaining 27
are VO and BLO as shown in Figure 4. How-
ever, there is a presence of heteroscedasticity in
this data set due to the funnel shape produce
by a plot in Figure 5.

Figure 4: plot of MGTi vs DRGPi for grunfeld
data

Table 4 presents the result of proposed and
existing methods in grunfeld investment data
set. The result indicates that WLSFMGt is the
most efficient method as the method provides
the lowest standard error of HC4 and HC5,
lowest standard error of the estimates.
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Figure 5: plot of residuals vs fitted value for
grunfeld data

Figure 6: plot of residuals vs fitted value for
artificial data

The second example is an artificial panel
data set, generated according to Bramati and
Croux (2007) simulation method consisting 100
observations for 5 individuals observed over
a period of 20 years. The response variable
is generated according to Equation (1) with
eit ∼ N

(
0, σ2e

)
, αi ∼ U (0, 20) where σ2e =

exp{c1x1} with c1 = 0.65 (Lima et al., 2009).
The vector of coefficients β equal to a vector
of ones. The three independent variables are
generated from standard normal distribution.
Figures 6 and 7 indicate the presence of het-

Table 4: Regression estimates for the grunfeld
investment data set

Estimator Coeff.
of
Esti-
mates

SE of
Esti-
mates

Stand. Error

HC4 HC5

LWS b1

b2

0.1027
0.1991

0.0153
0.0198

0.0005
0.0028

0.0005
0.0028

WLSF b1

b2

0.0908
0.2337

0.0142
0.0203

0.0003
0.0014

0.0003
0.0014

WLSRMD b1

b2

0.0993
0.2611

0.0132
0.0191

0.0004
0.0016

0.0004
0.0017

WLSDRGP b1

b2

0.0882
0.2198

0.0133
0.0182

0.0003
0.0009

0.0003
0.0009

WLSFMGt b1

b2

0.0928
0.1970

0.0084
0.0131

0.0002
0.0005

0.0002
0.0006

Figure 7: plot of MGTi vs DRGPi for artificial
data

eroscedasticity and outlying observations in the
data respectively.

Table 5 presents the result of artificial panel
data set. The result indicates that the pro-
posed method (WLSFMGt) is the best and most
efficient method as it gives the lowest stan-
dard error of HC4 and HC5, lowest standard
error of the estimates, followed by WLSDRGP,
WLSRMD, WLSF , and lastly LWS.
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Table 5: Regression estimates for the artificial
panel data set

Estimator Coeff.
of Esti-
mates

SE of
Esti-
mates

Stand. Error

HC4 HC5

LWS b1

b2

b3

3.5807
3.0539
-3.3994

1.7731
1.7671
1.8554

15.3064
10.8533
34.5642

15.3064
10.8533
34.5642

WLSF b1

b2

b3

1.4244
1.8017
0.1837

1.4235
1.4079
1.3412

1.2206
2.2439
2.5540

1.2206
2.2439
2.5540

WLSRMD b1

b2

b3

1.8430
2.1277
-0.4986

1.4664
1.4289
1.3625

2.1272
2.4837
4.4673

2.1272
2.4837
4.4673

WLSDRGP b1

b2

b3

1.7388
2.0739
-0.3580

1.4672
1.4265
1.3508

1.8703
2.4104
3.8956

1.8703
2.4104
3.8956

WLSFMGt b1

b2

b3

0.8436
1.5130
0.8268

0.7290
0.7249
0.7034

0.2403
0.2479
0.2447

0.2403
0.2479
0.2447

VII. Conclusion

The main focus of this study is to develop
a reliable estimation method for FE panel
data model for rectifying the problem of het-
eroscedasticity in the presence of HLPs. The
performance of the LWS estimator is very poor.
The RHCCM based on hat matrix weight-
ing method, i.e WLSF also not very efficient
as it suffers from swamping and masking ef-
fect. In this study, we propose robust estima-
tion methods in FE panel data model which
employ residuals from weighted least squares
(WLS) based on high leverage points detection
measure (RMD, DRGP and FMGt) weighting
methods in computing robust heteroscedastic-
ity consistent covariance matrix (RHCCM) es-
timator. The results based on both simulation
and numerical examples signify that the pro-
posed RHCCM estimator based on FMGT out-
performed the existing methods (LWS, WLSF )
and other proposed methods by providing the
least bias and least standard errors of HC4 and
HC5.

References

[1] Alguraibawi, M., Midi, H., and Imon, A.
(2015). A new robust diagnostic plot
for classifying good and bad high lever-
age points in a multiple linear regression
model. Mathematical Problems in Engi-
neering, 2015.

[2] Bakar, N. M. A. and Midi, H. (2015). Ro-
bust centering in the fixed effect panel
data model. Pakistan Journal of Statis-
tics, 31(1).

[3] Bramati, M. C. and Croux, C. (2007).
Robust estimators for the fixed effects
panel data model. The econometrics
journal, 10(3):521–540.

[4] Cribari-Neto, F. (2004). Asymptotic in-
ference under heteroskedasticity of un-
known form. Computational Statistics &
Data Analysis, 45(2):215–233.

[5] Cribari-Neto, F., Souza, T. C., and Vas-
concellos, K. L. (2007). Inference under
heteroskedasticity and leveraged data.
Communications in Statistics—Theory
and Methods, 36(10):1877–1888.

[6] Furno, M. (1996). Small sample behavior
of a robust heteroskedasticity consistent
covariance matrix estimator. Journal of
Statistical Computation and Simulation,
54(1-3):115–128.

[7] Greene, W. H. (2007). Econometric anal-
ysis.

[8] Habshah, M., Norazan, M., and Rahmat-
ullah Imon, A. (2009). The performance
of diagnostic-robust generalized poten-
tials for the identification of multiple high
leverage points in linear regression. Jour-
nal of Applied Statistics, 36(5):507–520.

[9] Hausman, J. and Palmer, C. (2012).
Heteroskedasticity-robust inference in fi-
nite samples. Economics Letters,
116(2):232–235.

237



ASM Science Journal, Volume 12, Special 1Issue , 2019 for IQRAC2018

[10] Kleiber, C. and Zeileis, A. (2008).
Applied econometrics with r. springer-
verlag.

[11] Lim, H. A. and Midi, H. (2016). Diag-
nostic robust generalized potential based
on index set equality (drgp (ise)) for the
identification of high leverage points in
linear model. Computational Statistics,
31(3):859–877.

[12] Lima, V. M., Souza, T. C., Cribari-
Neto, F., and Fernandes, G. B. (2009).
Heteroskedasticity-robust inference in
linear regressions. Communications in
Statistics-Simulation and Computation,
39(1):194–206.

[13] MacKinnon, J. G. and White, H. (1985).
Some heteroskedasticity-consistent co-
variance matrix estimators with im-
proved finite sample properties. Journal
of Econometrics, 29(3):305–325.

[14] Mahalanobis, P. C. (1936). On the gen-
eralized distance in statistics. National
Institute of Science of India.

[15] Maronna, R., Martin, R. D., and Yohai,
V. (2006). Robust statistics, volume 1.
John Wiley & Sons, Chichester. ISBN.

[16] Rana, S., Midi, H., and Imon, A. (2012).
Robust wild bootstrap for stabilizing
the variance of parameter estimates in
heteroscedastic regression models in the
presence of outliers. Mathematical Prob-
lems in Engineering, 2012.

[17] Rousseeuw, P. J. (1984). Least median of
squares regression. Journal of the Amer-
ican Statistical Association, 79(388):871–
880.

[18] Rousseeuw, P. J. and Van Zomeren, B. C.
(1990). Unmasking multivariate outliers
and leverage points. Journal of the Amer-
ican Statistical Association, 85(411):633–
639.

[19] Ruppert, D. (1992). Computing s esti-
mators for regression and multivariate lo-
cation/dispersion. Journal of Computa-
tional and Graphical Statistics, 1(3):253–
270.

[20] Verardi, V. and Wagner, J. (2011). Ro-
bust estimation of linear fixed effects
panel data models with an application
to the exporter productivity premium.
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